
IBM Research

 08/15/12 © 2011 IBM Corporation

Poking the soft underbelly of programmer 
productivity on exascale

              George Almási



IBM Research

© 2011 IBM Corporation 08/15/12

“Soft underbelly?” 1/2

What is this “productivity” you speak 
of?
–Minimize total effort:

• From intention to running program
– At required level of performance
– At required level of scaling

–Minimize required level of expertise
• To design the program
• To find bugs
• Performance optimization
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“Soft underbelly” 2/2

 The current discourse on exascale:

 Chock full of code words for one-off architectures 
that require unportable code

– “Deep memory hierarchy”

– “Multiple memory regions”

– “Low power architecture”

 Hero programmers
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Main productivity killer:  bad unexpected behavior

 Prog. models with twists

– split phase access, relaxed consistency

 Funny system programming APIs

– not-quite-POSIX-compliant AMOs

 Hardware oddities

– almost, but not quite cache coherent CPUs

 Surprise is bad; familiar is good
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A display of good ol' East-European Pessimism

 Exascale designers will sacrifice predictability of system

– In the name of holy performance

– In the name of holy power

 Common arguments from HW designers

– “System program will hide it”

– “Compiler will make up for it”

 NB: not claiming that all changes are bad.

– Just some the ones mandated by tightening [power] budgets

• It is one thing to design a minimalistic system

• It is another to cripple a system for power/cost reasons
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Outline

 Productivity and obstacles

 Examples of HPC “surprises”

– Architecture

– System software

– Self-inflicted wounds

 Conclusions
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Hardware

 Cache coherence on Blue Gene/L

 Collective Acceleration Units

 Vectorization
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Cache coherence on Blue Gene/L 1/2

 Blue Gene/L design: 2 PPC440 cores in a chip

– “hard macros” (not enough signals outside chip to 
implement cache coherency)

– Designers had two choices:

• Push IBM ME designers to bring wires outside
• Make up for it in software  <--- they chose this

– MPI “coprocessor mode”:

• Core 0 computes + sends messages
• Core 1 receives messages asynchronously
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Cache coherence on Blue Gene/L 2/2

Buffer 1: sent from (by CPU 0) Buffer 2: received into (by CPU 1)

Memory

Main processor cannot touch
loop:
  ld …, buffer
  st …, network
  bdnz loop

Last iteration: 
• branch predictor predicts branch taken
• ld executes speculatively

• cache miss causes first line of forbidden buffer area to be fetched into cache
• system executes branch, rolls back speculative loads
• does not roll back cache line fetch (because it’s nondestructive)

Conclusion: CPU 0 ends up with stale data in cache
But only when cache line actually survives before being used

Consequence: correctness failures; every 5th (or so) run
... on 4096 processors or more ...
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Collective Acceleration

 Hardware to improve collective latency & BW

– Better mapping to network topology

– Fewer CPU->network interactions

 Blue Gene/L, /P: separate collective network

– Independent performance

– Low latency bcast, fixed-point reductions

 PERCS: Collective Acceleration Unit

– Embedded in PERCS network

– Low latency bcast, floating point reductions
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CAU surprise on Blue Gene/L, /P

 2nd most popular MPI collective:

–  “Allreduce” of a single DP number

 Blue Gene collective network cannot do it.

– Designers did not feel like putting a FP unit into the accelerator.

– Justification: “You can do MAXLOC w/o a FP unit”

 Actually, BG/P reduction packets are 2048 bits

– Could we expand all mantissae and perform a fixed-point addition?

– No; about 70 bits missing (including subnormals)

  Several workarounds possible – all double (at least) latency
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CAU surprises on PERCS

 PERCS Collective Acceleration Units:

– Spanning tree built into the (almost fully connected) network

 Surprise 1: we forgot the SMP node

– PAMI programs run in SMT-1/2/4; 32/64/128 processes/node

– No hardware acceleration across SMP

– Horrific development cost; mediocre performance

 Surprise 2: non-scalable CAU trees

– System topology is complicated

– System software not designed to track topology

 Surprise 3: incorrect overflow conditions

– Symptom: random numbers instead of \inf
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PERCS machine network layout

Octant (1 node)
coherent
32 cores, SMT-4
= 128 threads Drawer (8 nodes)

Fully connected, 
Uniform BW/latency

Supernode (4 drw)
Fully connected, 
non-uniform BW/latency

Machine
Clique of supernodes
Only on a SN basis
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MPP Reduce - performance
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PERCS CAU overflow condition

 Symptom: fixed point allreduce overflow

– causes random results instead of \inf

 CAU detects overflow; throws HW error; replaces result with -1

– System software ignores HW exception

bignum bignum 1 3

Overflow
Replace w/ -1

Locally raised interrupt
(ignored)

4

Result: 3 (expected: \inf)



IBM Research

© 2011 IBM Corporation16  08/15/12

Vectorization on Blue Gene/L, /P

 CPU natively 64 bit; vector loads are  128 bit

cache line boundary

Load 16 bytes, aligned

Load 16 bytes, aligned

Load 16 bytes, not aligned

Load 16 bytes, not aligned

Code can only be vectorized if loads are  16 byte aligned
Compiler (mostly) unable to prove this
Nothing in the system carries 16 byte alignment guarantees
Compiler needs to generate versioned code and test for it
Performance POOF
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Vector instructions on Power7

 No instructions to communicate between VSX 
vector registers and fixed-point registers

– Units designed by two different committees

 Solutions: bounce through altivec registers; bounce 
through cache

 Power8 will fix this
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System software

 PAMI fences

 One-sided operations on PERCS UPC
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PERCS PAMI fence 1/2: lazy confirmations

Default PAMI behavior:
Fence ACKs ride piggyback 
on reliability layer (HAL) ACKs

(PAMI implementor's choice)

Default HAL behavior:
Coalesced packet ACKs
Lazy delivery of ACKs
Mitigated by timer interrupt

(HAL implementor's choice)

PAMI fence implementation: 
     Issuer counts outstanding (not ACK'ed) 
messages
     Receivers issue ACKs
     ACKs retire outstanding messages
     Fence complete when outstanding == 0

  Symptom: occasional 4 ms (!) fences on PERCS

 fence follows asymmetric communication (passive receiver)

Issuer Recv

outstanding PUT

Completion ACK

Guess who did not talk to each other when designing the 
system?
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PERCS PAMI Fence 2/2: ACK-counting bug
 Symptom: UPC version of UTS hangs when running on > 10 

tasks.

 Correct fence implementation:

 Account for messages outstanding when fence is entered

 Actual fence implementation:

 Account for messages outstanding when fence exits

 Such a small difference ... why is this a problem?

1) Messages arrive while fence is executing.

2) Arriving messages require immediate replies.

3) Outgoing replies require acks, which the fence is going to wait for.

4) While waiting for acks, new messages arrive.

5) Fence never returns!

Every Power system since ASCII Purple has had this bug. 
Nobody noticed.
The defect was almost unfixable in the current PAMI implementation.
UPC compiler/runtime has a workaround in place “just in case”.
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Strict UPC puts ops require progress on passive 
side

 Symptom: 

– “strict” UPC write hangs when remote task is busy computing

 Remote put is onesided op

– Eager RDMA used; no progress on remote side needed

– “Strict” puts require acknowledgement of remote completion

– Remote completion acks are piggybacked on HAL

– HAL runs only when remote CPU gets a chance to run it

We were assured that RDMA will solve all remote get/put problems
We jumped through all the hoops: 

registering memory, setting the PAMI hint bits etc.
It still doesn't work (because acks are sent by software)
HW designers: “you should have known”
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Self-inflicted wounds

 The evils of non-blocking access

 UTS scaling woes

 Performance as seen by a non-professional
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Nonblocking access is evil
One-sided access almost as bad

 Confuses programmers no end

– Difficult to track dependencies by hand

 One of few things compilers can take care of

– Except for aliasing issues

– Except that MPI has no compiler, HAHAHA
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The evils of non-blocking access

if (a_piv) memcpy (aux, pivot, blksize);
if (a_piv) v = memget_async  (pivot, root, blksize);
bcast (..., aux, blksize);
if (a_root) memcpy  (root, aux, blksize);
if (v) upc_waitsync(v);

HPC Challenge code, HPL linpack

Operation: 
● Broadcast pivot to everyone
● Copy root to pivot

Overlap solution:
● Copy pivot into a temporary (“aux”)
● Broadcast across “aux” array
● (Overlap) copy from root to pivot
● Copy aux->root

root

pivot

aux
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The PERCS UTS problem

 UTS (“Unbalanced Tree Search”) is a 
UPC/shmem/MPI benchmark

 Distributed work stealing, distributed termination 
detection algorithms

 DARPA requirement for PERCS:

– Run and scale unmodified UPC UTS.

– Symptom: unmodified UTS hangs on 4+ supernodes 
(4000+ tasks)
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UPC UTS: what happens in the interruptible barrier

Initialize barrier

– Set shared scalar “count” to zero

 Join barrier (ran out of work)

– Atomically increment “count”

 Leave barrier (stole more work)

– Atomically decrement “count”

 Test for completion

– Test shared “count” against THREADS

Original code: busywait on “count”
Does not scale beyond 4 supernodes:
(hardware retransmission timeouts)
Makes scaling impossible
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So who wrote this %#@!?

 This pattern would work 
on Blue Gene

– Network pushes back on 
sender

 Will not work on PERCS

– Network ignores & drops 
packets

 Had to replace with new 
pattern



IBM Research

© 2011 IBM Corporation 08/15/12

Let's do graphs on PowerPC

 Pranay Anchuri, graduate 
student at RPI

 Graph theory expert

 Spent a summer at TJ 
Watson working on 
performance aspects of 
parallel graph algorithms 
other than graph500.

– Frequent subgraph mining; 
MIS; Luby's algorithm

 Pranay is not a 
performance expert

– Favorite programming 
languages:

• Python (1000x slowdown)
• C++/Boost+MPI (100x 

slowdown)
• C++/STL (10x slowdown)
• Under duress: C with 

arrays, CUDA, OpenMP

Why is C++/STL 10x slower than C with array 
lookup?
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Why is Pranay's code slow?

 Simple code

 Traditional data structures:

– Things you'd see in an 
“algorithm” pseudocode

– Sets, Multisets

– Maps, 

– Vectors, lists

 Simple operations:

– edge/vertex set membership 
test

– vertex->edge lookup

 Python: Duck typing, difficulty to 
prove almost anything about the 
code (even though programmer 
intentions are blindingly obvious)

 Boost+MPI: collectives ain't

 OpenMP: there is no prefix reduction 
in OpenMP (!!!!)

 C++/STL:

– Hash table lookups

– Used by sets, multisets, maps

– Computing a hash bucket uses an 
integer divide operation

– Rule of thumb for integer divides:

• 1 cycle/bit, not pipelined
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Conclusions 1/2

 Murphy's First Maxim of Computers: To err is human, but to 
really screw things up requires a computer. 

– My observation: the size of the screw up is at least a polynomial function 
of the size of the computer

 Listed (mostly) known failures of IBM systems

– Others have been known to do this

 Motivation behind failures

– Misguided compromises: the drive to 'save' something

– Sometimes: not correctly understanding system requirements

• Now called 'codesign'

– Sometimes: not correctly predicting future requirements

• Did not have my crystal ball handy
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Conclusion 2/2: my problem

 Productivity cost obvious in above examples

– 20/20 hindsight

 What is an unacceptable HW compromise?

– No crystal balls

– Codesign imperfect – HW designers seem to be co-opting 
us

 Failure: “You'll know it when you see it” (e.g. cell)

– No methodology for prediction

– Except for the obvious “don't muck with cache coherency”

 Help!??
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