
IBM Research

 08/15/12 © 2011 IBM Corporation

Poking the soft underbelly of programmer
productivity on exascale

 George Almási

IBM Research

© 2011 IBM Corporation 08/15/12

“Soft underbelly?” 1/2

What is this “productivity” you speak
of?
–Minimize total effort:

• From intention to running program
– At required level of performance
– At required level of scaling

–Minimize required level of expertise
• To design the program
• To find bugs
• Performance optimization

IBM Research

© 2011 IBM Corporation 08/15/12

“Soft underbelly” 2/2

 The current discourse on exascale:

 Chock full of code words for one-off architectures
that require unportable code

– “Deep memory hierarchy”

– “Multiple memory regions”

– “Low power architecture”

 Hero programmers

IBM Research

© 2011 IBM Corporation 08/15/12

Main productivity killer: bad unexpected behavior

 Prog. models with twists

– split phase access, relaxed consistency

 Funny system programming APIs

– not-quite-POSIX-compliant AMOs

 Hardware oddities

– almost, but not quite cache coherent CPUs

 Surprise is bad; familiar is good

IBM Research

© 2011 IBM Corporation 08/15/12

A display of good ol' East-European Pessimism

 Exascale designers will sacrifice predictability of system

– In the name of holy performance

– In the name of holy power

 Common arguments from HW designers

– “System program will hide it”

– “Compiler will make up for it”

 NB: not claiming that all changes are bad.

– Just some the ones mandated by tightening [power] budgets

• It is one thing to design a minimalistic system

• It is another to cripple a system for power/cost reasons

IBM Research

© 2011 IBM Corporation 08/15/12

Outline

 Productivity and obstacles

 Examples of HPC “surprises”

– Architecture

– System software

– Self-inflicted wounds

 Conclusions

IBM Research

© 2011 IBM Corporation 08/15/12

Hardware

 Cache coherence on Blue Gene/L

 Collective Acceleration Units

 Vectorization

IBM Research

© 2011 IBM Corporation 08/15/12

Cache coherence on Blue Gene/L 1/2

 Blue Gene/L design: 2 PPC440 cores in a chip

– “hard macros” (not enough signals outside chip to
implement cache coherency)

– Designers had two choices:

• Push IBM ME designers to bring wires outside
• Make up for it in software <--- they chose this

– MPI “coprocessor mode”:

• Core 0 computes + sends messages
• Core 1 receives messages asynchronously

IBM Research

© 2011 IBM Corporation 08/15/12

Cache coherence on Blue Gene/L 2/2

Buffer 1: sent from (by CPU 0) Buffer 2: received into (by CPU 1)

Memory

Main processor cannot touch
loop:
 ld …, buffer
 st …, network
 bdnz loop

Last iteration:
• branch predictor predicts branch taken
• ld executes speculatively

• cache miss causes first line of forbidden buffer area to be fetched into cache
• system executes branch, rolls back speculative loads
• does not roll back cache line fetch (because it’s nondestructive)

Conclusion: CPU 0 ends up with stale data in cache
But only when cache line actually survives before being used

Consequence: correctness failures; every 5th (or so) run
... on 4096 processors or more ...

IBM Research

© 2011 IBM Corporation 08/15/12

Collective Acceleration

 Hardware to improve collective latency & BW

– Better mapping to network topology

– Fewer CPU->network interactions

 Blue Gene/L, /P: separate collective network

– Independent performance

– Low latency bcast, fixed-point reductions

 PERCS: Collective Acceleration Unit

– Embedded in PERCS network

– Low latency bcast, floating point reductions

IBM Research

© 2011 IBM Corporation 08/15/12

CAU surprise on Blue Gene/L, /P

 2nd most popular MPI collective:

– “Allreduce” of a single DP number

 Blue Gene collective network cannot do it.

– Designers did not feel like putting a FP unit into the accelerator.

– Justification: “You can do MAXLOC w/o a FP unit”

 Actually, BG/P reduction packets are 2048 bits

– Could we expand all mantissae and perform a fixed-point addition?

– No; about 70 bits missing (including subnormals)

 Several workarounds possible – all double (at least) latency

IBM Research

© 2011 IBM Corporation 08/15/12

CAU surprises on PERCS

 PERCS Collective Acceleration Units:

– Spanning tree built into the (almost fully connected) network

 Surprise 1: we forgot the SMP node

– PAMI programs run in SMT-1/2/4; 32/64/128 processes/node

– No hardware acceleration across SMP

– Horrific development cost; mediocre performance

 Surprise 2: non-scalable CAU trees

– System topology is complicated

– System software not designed to track topology

 Surprise 3: incorrect overflow conditions

– Symptom: random numbers instead of \inf

IBM Research

© 2011 IBM Corporation 08/15/12

PERCS machine network layout

Octant (1 node)
coherent
32 cores, SMT-4
= 128 threads Drawer (8 nodes)

Fully connected,
Uniform BW/latency

Supernode (4 drw)
Fully connected,
non-uniform BW/latency

Machine
Clique of supernodes
Only on a SN basis

IBM Research

© 2011 IBM Corporation14 08/15/12

MPP Reduce - performance

0.125 0.25 0.5 1 2 4 8 16
0

5

10

15

20

25

30

35

40

45

MPP Reduce

Supernodes

L
at

e
nc

y
(u

se
cs

)

Should have
Mapped CAU tree
Into network topology

Actually mapped
CAU tree onto
Flat task space
0 to P-1 tasks.

IBM Research

© 2011 IBM Corporation15 08/15/12

PERCS CAU overflow condition

 Symptom: fixed point allreduce overflow

– causes random results instead of \inf

 CAU detects overflow; throws HW error; replaces result with -1

– System software ignores HW exception

bignum bignum 1 3

Overflow
Replace w/ -1

Locally raised interrupt
(ignored)

4

Result: 3 (expected: \inf)

IBM Research

© 2011 IBM Corporation16 08/15/12

Vectorization on Blue Gene/L, /P

 CPU natively 64 bit; vector loads are 128 bit

cache line boundary

Load 16 bytes, aligned

Load 16 bytes, aligned

Load 16 bytes, not aligned

Load 16 bytes, not aligned

Code can only be vectorized if loads are 16 byte aligned
Compiler (mostly) unable to prove this
Nothing in the system carries 16 byte alignment guarantees
Compiler needs to generate versioned code and test for it
Performance POOF

IBM Research

© 2011 IBM Corporation17 08/15/12

Vector instructions on Power7

 No instructions to communicate between VSX
vector registers and fixed-point registers

– Units designed by two different committees

 Solutions: bounce through altivec registers; bounce
through cache

 Power8 will fix this

IBM Research

© 2011 IBM Corporation 08/15/12

System software

 PAMI fences

 One-sided operations on PERCS UPC

IBM Research

© 2011 IBM Corporation08/15/12

PERCS PAMI fence 1/2: lazy confirmations

Default PAMI behavior:
Fence ACKs ride piggyback
on reliability layer (HAL) ACKs

(PAMI implementor's choice)

Default HAL behavior:
Coalesced packet ACKs
Lazy delivery of ACKs
Mitigated by timer interrupt

(HAL implementor's choice)

PAMI fence implementation:
 Issuer counts outstanding (not ACK'ed)
messages
 Receivers issue ACKs
 ACKs retire outstanding messages
 Fence complete when outstanding == 0

 Symptom: occasional 4 ms (!) fences on PERCS

 fence follows asymmetric communication (passive receiver)

Issuer Recv

outstanding PUT

Completion ACK

Guess who did not talk to each other when designing the
system?

IBM Research

© 2011 IBM Corporation08/15/12

PERCS PAMI Fence 2/2: ACK-counting bug
 Symptom: UPC version of UTS hangs when running on > 10

tasks.

 Correct fence implementation:

 Account for messages outstanding when fence is entered

 Actual fence implementation:

 Account for messages outstanding when fence exits

 Such a small difference ... why is this a problem?

1) Messages arrive while fence is executing.

2) Arriving messages require immediate replies.

3) Outgoing replies require acks, which the fence is going to wait for.

4) While waiting for acks, new messages arrive.

5) Fence never returns!

Every Power system since ASCII Purple has had this bug.
Nobody noticed.
The defect was almost unfixable in the current PAMI implementation.
UPC compiler/runtime has a workaround in place “just in case”.

IBM Research

© 2011 IBM Corporation 08/15/12

Strict UPC puts ops require progress on passive
side

 Symptom:

– “strict” UPC write hangs when remote task is busy computing

 Remote put is onesided op

– Eager RDMA used; no progress on remote side needed

– “Strict” puts require acknowledgement of remote completion

– Remote completion acks are piggybacked on HAL

– HAL runs only when remote CPU gets a chance to run it

We were assured that RDMA will solve all remote get/put problems
We jumped through all the hoops:

registering memory, setting the PAMI hint bits etc.
It still doesn't work (because acks are sent by software)
HW designers: “you should have known”

IBM Research

© 2011 IBM Corporation 08/15/12

Self-inflicted wounds

 The evils of non-blocking access

 UTS scaling woes

 Performance as seen by a non-professional

IBM Research

© 2011 IBM Corporation 08/15/12

Nonblocking access is evil
One-sided access almost as bad

 Confuses programmers no end

– Difficult to track dependencies by hand

 One of few things compilers can take care of

– Except for aliasing issues

– Except that MPI has no compiler, HAHAHA

IBM Research

© 2011 IBM Corporation24 08/15/12

The evils of non-blocking access

if (a_piv) memcpy (aux, pivot, blksize);
if (a_piv) v = memget_async (pivot, root, blksize);
bcast (..., aux, blksize);
if (a_root) memcpy (root, aux, blksize);
if (v) upc_waitsync(v);

HPC Challenge code, HPL linpack

Operation:
● Broadcast pivot to everyone
● Copy root to pivot

Overlap solution:
● Copy pivot into a temporary (“aux”)
● Broadcast across “aux” array
● (Overlap) copy from root to pivot
● Copy aux->root

root

pivot

aux

IBM Research

© 2011 IBM Corporation 08/15/12

The PERCS UTS problem

 UTS (“Unbalanced Tree Search”) is a
UPC/shmem/MPI benchmark

 Distributed work stealing, distributed termination
detection algorithms

 DARPA requirement for PERCS:

– Run and scale unmodified UPC UTS.

– Symptom: unmodified UTS hangs on 4+ supernodes
(4000+ tasks)

IBM Research

© 2011 IBM Corporation 08/15/12

UPC UTS: what happens in the interruptible barrier

Initialize barrier

– Set shared scalar “count” to zero

 Join barrier (ran out of work)

– Atomically increment “count”

 Leave barrier (stole more work)

– Atomically decrement “count”

 Test for completion

– Test shared “count” against THREADS

Original code: busywait on “count”
Does not scale beyond 4 supernodes:
(hardware retransmission timeouts)
Makes scaling impossible

IBM Research

© 2011 IBM Corporation 08/15/12

So who wrote this %#@!?

 This pattern would work
on Blue Gene

– Network pushes back on
sender

 Will not work on PERCS

– Network ignores & drops
packets

 Had to replace with new
pattern

IBM Research

© 2011 IBM Corporation 08/15/12

Let's do graphs on PowerPC

 Pranay Anchuri, graduate
student at RPI

 Graph theory expert

 Spent a summer at TJ
Watson working on
performance aspects of
parallel graph algorithms
other than graph500.

– Frequent subgraph mining;
MIS; Luby's algorithm

 Pranay is not a
performance expert

– Favorite programming
languages:

• Python (1000x slowdown)
• C++/Boost+MPI (100x

slowdown)
• C++/STL (10x slowdown)
• Under duress: C with

arrays, CUDA, OpenMP

Why is C++/STL 10x slower than C with array
lookup?

IBM Research

© 2011 IBM Corporation 08/15/12

Why is Pranay's code slow?

 Simple code

 Traditional data structures:

– Things you'd see in an
“algorithm” pseudocode

– Sets, Multisets

– Maps,

– Vectors, lists

 Simple operations:

– edge/vertex set membership
test

– vertex->edge lookup

 Python: Duck typing, difficulty to
prove almost anything about the
code (even though programmer
intentions are blindingly obvious)

 Boost+MPI: collectives ain't

 OpenMP: there is no prefix reduction
in OpenMP (!!!!)

 C++/STL:

– Hash table lookups

– Used by sets, multisets, maps

– Computing a hash bucket uses an
integer divide operation

– Rule of thumb for integer divides:

• 1 cycle/bit, not pipelined

IBM Research

© 2011 IBM Corporation 08/15/12

Conclusions 1/2

 Murphy's First Maxim of Computers: To err is human, but to
really screw things up requires a computer.

– My observation: the size of the screw up is at least a polynomial function
of the size of the computer

 Listed (mostly) known failures of IBM systems

– Others have been known to do this

 Motivation behind failures

– Misguided compromises: the drive to 'save' something

– Sometimes: not correctly understanding system requirements

• Now called 'codesign'

– Sometimes: not correctly predicting future requirements

• Did not have my crystal ball handy

IBM Research

© 2011 IBM Corporation 08/15/12

Conclusion 2/2: my problem

 Productivity cost obvious in above examples

– 20/20 hindsight

 What is an unacceptable HW compromise?

– No crystal balls

– Codesign imperfect – HW designers seem to be co-opting
us

 Failure: “You'll know it when you see it” (e.g. cell)

– No methodology for prediction

– Except for the obvious “don't muck with cache coherency”

 Help!??

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	The absolutely ugliest war story on BG/L MPI
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

