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OUTLINE 

HPC for Reactor Physics Simulation 

Development constraints and software lifecycle 

Trends in supercomputing and impacts on scientific codes 

HPC in deterministic neutronics simulations using 
APOLLO3® 

Some requirements and needs for developing large scale 
simulation codes at the post petascale and exascale era 
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0s     3 years           50 years 106 years time 

 

Core physics, criticality, radiation shielding, Instrumentation 

APPLICATION FIELDS AND CHALLENGES 

. Particles propagation– neutrons, …- 

. Isotopic depletion 
. Energy range: 0. – 20 MeV 

. Domain size:  30 000 m3 ≡ 3. 1010 cm3 

radioactivity α, β, γ, n, 

In core stay 
Pool storage 

Fuel transport, refining, production 

Dismantling Geological warehousing 
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HPC FOR REACTOR PHYSICS: OBJECTIVES 

Decrease margin by decreasing uncertainties: 
Parametric calculations (statistic approach) 
Finer physics (CFD + transport / MC) 
More “realistic” physics  multiphysics coupling 

Design optimization: 
Finer and more realistic physics  
“Numerical Nuclear Reactor” 

Improve safety : 
Criticality and shielding: MC approach 

Improve reactor management: 
Embedded calculator (real time) 
Nuclear fuel optimization (neural networks) 

Progress in physics: 
Models improvements for a “coarser” physics  multi scale 
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HPC FOR REACTOR PHYSICS: SIMULATION 
TARGETS 

To provide simulation capabilities in order to: 
To simulate specific situations for safety reasons 

- Sensibility calculations, Transient simulations  
Allow fast design of complex reactors  

- Design simulations 
Validate and qualify models and calculation routes when experiments are not possible 
or too expensive  

- Reference simulations  
Improve reactor management 

- Real time simulation 
 
These simulations have to be as realistic as possible and this 
implies use of very fine 3D modeling. 
 

New reactor generation  
 new approach for design and safety  
 new code generation  

With “controlled” uncertainties 
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DEVELOPMENT CONSTRAINTS AND 
SOFTWARE LIFECYCLE 
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APOLLO LIFE STORY 
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DEVELOPMENT CONSTRAINTS 

Developed codes are used by  
Industrial partners 
Regulation authority 
CEA 

 
For 

Safety 
Design 
Reference calculations 
 

 
Imply many constraints: 

Portability (different architectures, OS, from PC to supercomputers) 
Robustness 
Maintainability 
Performances 
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TRENDS IN SUPERCOMPUTING AND 
IMPACTS ON SCIENTIFIC CODES 
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TRENDS IN SUPERCOMPUTING 

Petascale and post-petascale 
 
The degree of parallelism is increasing 
The number of levels of parallelism is 
increasing 
The number of levels of memory is 
increasing  
Heterogeneous architectures with 
accelerators 
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TRENDS IN SUPERCOMPUTING 

 
Exascale: Main questions 

Power 
Low power processor (ARM) 
Maximize Flops/watt (GPU, MIC) 
Minimize the memory per core 

 
Communication 

Avoid global communication 
 
Fault tolerance 

MTBF <1h 
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HPC IN DETERMINISTIC NEUTRONICS 
SIMULATIONS USING APOLLO3® 
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REACTOR PHYSICS SIMULATION : APOLLO3®  
KEYWORDS 

• Continued integration and knowledge capitalization 
• Unique calculation system for all-types reactors and cycle 
calculation 

 
• R&D frame for physics and mathematics modelization  
• R&D tool for nuclear systems design 
• Industrial or easy-to-industrialize tools 
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THE CEA NEW SOFTWARE SEQUENCE FOR NUCLEAR 
ENGINEERING SIMULATION 

• CONRAD/GALILEE 
– Nuclear data 

treatment and 
evaluation  

• APOLLO3® 

– 3D deterministic 
multipurpose 
transport  code 

• MENDEL 
– Isotopic depletion & 

derived quantities,  
• TRIPOLI-4 

– Monte Carlo & 
simplified gamma 
transport 

 
 

APOLLO3 

MENDEL 

GALILEE 

Neutronics Shielding 

Criticality 

TRIPOLI-4 

CONRAD 
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APOLLO3® SOFTWARE 

Object Oriented conception 
 
Mainly C++ + some F90 modules 
 
Parallelism support: 

MPI 
OpenMP 
CUDA 
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A3: THE DIFFERENT LEVELS OF PARALLELISM 

Level 1: multi parameters (distributed computing) 
multi parameters assemblies calculations  

Level 2: multi domains (massive parallel computing) 
 σ, Σ 
Depletion, Neutronic Feedback, 
DDM for flux computation 

Level 3: flux computation on a sub-domain (SMP) 
Level 3’: hybrid computation using accelerator  
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ILLUSTRATION OF HPC IN APOLLO3 

Level 1: Loading Pattern optimization using genetic algorithms 
10 millions of independent full 3D core computations with AP3 in 8h using 4k 
cores 
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Level 2-3’: Domain decomposition mixed with 
hybrid GPGU computing 

Simplified transport solver – FEM method 
Additive Schwartz DD method 
GPU acceleration on each sub domain 
 
   Time (s) 

CPU solver 284 

GPU solver 52 

Speedup 5 
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ILLUSTRATION OF HPC IN APOLLO3 

Level 1-2-3: Massively Parallel Computing 3D Sn Sodium Cooled Fast Reactor 
Sn transport Solver 2D/3D 
Unstructured mesh (triangle based) 
Discontinuous Galerkin FEM 
 
2 parallelism levels 
- Through angular direction (MPI) 
- Along each angular direction (OpenMP) 
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3D ref. calculation S256 using 33.000 cores 
Parametric study: result obtained in 12h using 
5.000 cores instead of one month 

 



SOME REQUIREMENTS AND NEEDS 
FOR DEVELOPING LARGE SCALE 
SIMULATION CODES AT THE POST 
PETASCALE AND EXASCALE ERA 
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HOW TO DESIGN SCIENTIFIC CODES FOR POST 
PETASCALE AND EXASCALE 

Need of high abstraction modeling environment 
Modeling language for parallel software design (“UML for Exascale”) 
 
To design novel software architecture:  

polymorphic algorithm (depending on the //ism degree) , 
use optimized components 
auto tuning / smart tuning 

 
Unified productive programming model allowing us to express the different levels of 
parallelism and memory hierarchy: 

Minimize languages interoperability problems (Fortran, C, C++, MPI, OpenMP, CUDA, 
OpenCL, ….) 
Help to express in easier way the new parallel programming challenges 

 
Fault tolerance: 

To be integrated now at the application level and perhaps at the algorithmic level 
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SOME EXAMPLES 

Framework for heterogeneous architecture abstraction 
KASH (Krylov bAsed Solvers for Hybrid architecture) 
 
Trilinos/Kokkos 
 
 
 

Polymorphic algorithm 
Petsc 3.3 

 
 
Auto tuning / smart tuning 

DOE ACTS collection 
 
ABCLib 
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“Mixed-mode implementation of PETSc 
for scalable linear algebra on multi-core 
processors” 



SOME EXAMPLES 

Languages 
PGAS and Data parallel languages  
-  UPC, X10, CHAPEL, … 

- CAF, GlobalArrays, XcalableMP, … 

Meta languages for distributed computing(YML, …) 
 

Programming environment for post-petascale (FP3C project) 
“FP2C+” “Framework for Post-Petascale Computing”. 
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 A Multi-Level Parallel Programming Framework 
Implementation: 
 Top:YML a graph description language and framework 
 Intermediate: XMP a directive based programming 
 Low: Thread programming paradigm (StarPU) 
 Low: XMP-Dev for GPU 



SUMMARY 
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PETASCALE AND FURTHER FOR REACTOR PHYSICS 

HPC is a compulsory tool for Reactor Physics Simulations. 
 
As for many industrial and R&D numerical simulation fields, many constraints 
in code development: 

Code lifecycle, Portability, performances, robustness, maintainability, … 
 

Meanwhile petascale and further architectures becomes more and more 
complex and hierarchical: 

Multi-level parallelism, Memory hierarchy, Heterogeneity 
… 
 

 Need of new programming environment in order to: 
Take into account the evolving architectures and keep performances as best as 
possible: allow the programmer to express the different levels of parallelism, 
heterogeneity… 
Respect the constraints of industrial scientific codes. 
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PETASCALE AND FURTHER FOR REACTOR PHYSICS 

Petascale and post-petascale machines are needed, and will be used 
in a useful way only if large scientific applications can be efficiently 
run on them. 

 
Not only efficient architectures and/or some high end 
application 
 
New programming environment in order to adapt large scientific 
applications on these new architectures. 
 

AUGUST 27, 2012 |  PAGE 26 CEA | AUGUST 2012 



Thanks for your attention! 
 
Time for questions and discussions. 

C. CALVIN – J. DUBOIS 
christophe.calvin@cea.fr – jerome.dubois@cea.fr 

CEA/DEN/DANS/DM2S 
 

COMMISSARIAT À L’ÉNERGIE ATOMIQUE ET AUX ÉNERGIES ALTERNATIVES 
CENTRE DE SACLAY | 91191 GIF-SUR-YVETTE CEDEX 
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