
Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

 Anticipated Programming Models

for Scale-Bridging Materials
Science at Exascale

Timothy C. Germann1, James F. Belak2,
and Allen McPherson1

1Los Alamos National Laboratory
2Lawrence Livermore National Laboratory

tcg@lanl.gov
Slide 1

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

Abstract
Computational materials scientists have been among the earliest and heaviest users of leadership-class
supercomputers. The codes and algorithms which have been developed span a wide range of physical
scales, and have been useful not only for gaining scientific insight, but also as testbeds for exploring new
approaches for tacking evolving challenges, including massive (nearly million-way) concurrency, an
increased need for fault and power management, and data bottlenecks. As examples, I will describe our
classical molecular dynamics simulations as early users on the LLNL BG/L and LANL Roadrunner
platforms, including in situ analysis and visualization of trillion-atom simulations. Multiscale, or scale-
bridging, techniques are attractive from both materials science and computational perspectives,
particularly as we look ahead from the current petascale era towards the exascale platforms expected to
be deployed by the end of this decade. In particular, the increasingly heterogeneous and hierarchical
nature of computer architectures demands that algorithms, programming models, and tools must mirror
these characteristics if they are to thrive in this environment. Given the increasing complexity of such
high-performance computing ecosystems (architectures, software stack, and application codes),
computational “co-design” is recognized to be critical as we move from current petascale to exascale
supercomputers over the rest of this decade. The Exascale Co-design Center for Materials in
Extreme Environments (ExMatEx) is an effort to do this by initiating an early and extensive collaboration
between computational materials scientists, computer scientists, and hardware manufacturers. Our goal
is to develop the algorithms for modeling materials subjected to extreme mechanical and radiation
environments, and the necessary programming models and runtime systems (middleware) to enable their
execution; and also influence potential architecture design choices for future exascale systems.

Slide 2

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

Exascale Co-design Center for Materials in Extreme
Environments
n  One of three* DOE/SC/ASCR co-design centers

started in August 2011
Large scale collaborations between national labs,
academia, and vendors
*Others are: CESAR (nuclear energy), ExaCT (combustion)

n  Our goal is to establish the relationships between
algorithms, software stack, and architectures
needed to enable exascale-ready materials science
apps in ~2020.

n  We will exploit hierarchical, heterogeneous
architectures to achieve more realistic large-scale
simulations with adaptive physics refinement.

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA
4

Code: Qbox/
LATTE

Motif: Particles
and
wavefunctions,
plane wave
DFT,
ScaLAPACK,
BLACS, and
custom parallel
3D FFTs

Prog. Model:
MPI + CUBLAS/
CUDA

Code: SPaSM/
ddcMD

Motif: Particles,
explicit time
integration,
neighbor and
linked lists,
dynamic load
balancing, parity
error recovery,
and in situ
visualization

Prog. Model:
MPI + X

Code: SEAKMC

Motif: Particles
and defects,
explicit time
integration,
neighbor and
linked lists, and
in situ
visualization

Prog. Model:
MPI + Threads

Code: AMPE/GL

Motif: Regular
and adaptive
grids, implicit
time integration,
real-space and
spectral
methods,
complex order
parameter

Prog. Model:
MPI

Code: ParaDis

Motif:
“segments”
Regular mesh,
implicit time
integration, fast
multipole
method

Prog. Model:
MPI

Code: VP-FFT

Motif: Regular
grids, tensor
arithmatic,
meshless image
processing,
implicit time
integration, 3D
FFTs.

Prog. Model:
MPI + Threads

Code: ALE3D

Motif: Regular
and irregular
grids, explicit
and implicit time
integration.

Prog. Model:
MPI + Threads

Ab-initio MD Long-time Phase Field Dislocation Crystal Continuum
Inter-atomic
forces, EOS

Defects and
interfaces,
nucleation

Defects and
defect

structures

Meso-scale
multi-phase

evolution

Meso-scale
strength

Meso-scale
material

response

Macro-scale
material

response

Computational Materials Science spans a wide range of
time/length scales, each requiring different models

For a recent upscaling example, see: N. Barton et al, “A multiscale strength model
for extreme loading conditions,” J. Appl. Phys. 109, 073501 (2011)

A wide range of applications have been studied with
SPaSM: 1993-2012 covers

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

Agile proxy application development

n  Proxy apps for single-scale SPMD applications (e.g. molecular dynamics) will be
used to assess node-level issues including:

—  Data structures
—  Hierarchical memory storage and access
—  Power management strategies
—  Node-level performance

n  Asynchronous task-based MPMD scale-bridging proxy apps will be used to
optimize:

—  System-level data movement
—  Resilience (fault management)
—  Load balancing techniques
—  Performance scalability

n  These proxy apps are not static entities, but the central mechanism for our co-
design process.

n  Application, software, and hardware communities analyze and respond to trade-
offs with new requirements and capabilities, both from and to the application.

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

Agile proxy application development

Slide 7

n  Initial proxy specification & reference implementation
•  Canonical serial implementation of “whole code” to extent possible

—  Baseline for vendor interaction and subsequent “new”
implementations

—  Needed for “holistic” analysis—production codes too big
—  Provided by domain code developer—trimmed (?) production code
—  Open sourced along with suitable documentation

•  Assistance from domain science developers to extract “core” proxies
—  Kernels, halo exchange, data sharing, etc.

n  Use of proxies to explore language and hardware space
•  Language & Model: data parallel, task parallel, multi-core, GPU, etc.

—  Proxies for experimentation and analysis
—  Proxies for architecture simulation

•  Coding: using today’s available APIs and languages, e.g. CUDA, TBB,
OpenMP, MPI, ArBB, Co-Op, Chapel, Charm++, OpenACC, OpenCL, etc.

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

Where we are now, and where we are headed

n  MPI+X for single-scale materials codes will dominate for current
(Sequoia/Mira and Titan/Blue Waters) and next-generation ~2015
machines (e.g. ASC Trinity), but will they for exascale?

Slide 8

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

n  (Inter-Node) System-level. No shared memory. Traditionally uses MPI to
communicate data between disjoint address spaces.

n  (Intra-Node) Cores. Modern nodes have multiple CPU cores. The work needs to be
distributed across them. Old fashioned MPI is one option, but this increases surface
to volume. Solutions such as OpenMP that acknowledge the shared address space
(possibly NUMA) among the cores are probably preferred, especially in new code.

n  (Intra-Node) Threads. Modern cores are supporting multiple hardware threads per
node. Among other things, multiple threads per core cover latencies since some
threads can typically proceed while others are stalled. Multiple threads may allow for
better register usage, reduced pipeline stalls, etc.

n  (Intra-Node) SIMD. We are now seeing quad-double SIMD units on Intel and AMD
hardware as well as BG/Q. Memory access need to be aligned to allow vector
registers to be filled efficiently. Throwing away SIMD instructions is instantly giving
away a factor of 4 in performance. On GPUs, warps are rather like SIMD instructions
since all threads in a warp execute the same instruction.

n  (Intra-Node) Functional Units. BG/Q has both an integer and a floating point unit
for each core. It is the integer unit that loads data so in order to do useful processing
you need to keep both active (to both load and process data). Note that any thread
can only issue an instruction to one of the units per cycle so at least two threads are
needed to fully exploit the units. It is also important to structure algorithms so that
the use of the functional units is balanced.

 Petascale (exascale) application developers must
optimize for a complex parallel machine

9

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

Where we are now, and where we are headed

n  MPI+X for single-scale materials codes will dominate for current
(Sequoia/Mira and Titan/Blue Waters) and next-generation ~2015
machines (e.g. ASC Trinity), but will they for exascale?

n  The challenge of programming models – particularly for emerging
exascale architectures – is how much of this architectural complexity
should be exposed to the application code developer.

Slide 10

Performance
e.g. programming to the metal

Portability
e.g. domain-specific languages

Productivity
e.g. “magic compilers”

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

Slide 11

Abstractions

n  Incremental progress towards three P’s
•  Portability, productivity, performance
•  Insulate project from exascale uncertainty

—  Node & network architecture?
—  Programming APIs, languages, environments?
—  System runtime for scheduling, fault monitoring/recovery, etc.

•  Allows vendors and others to innovate “underneath”
•  There is no free lunch—someone must do the work (but not domain scientists)

n  Extract and document abstractions throughout entire system
•  Early in project will focus on “domain science” abstractions

—  E.g. meshes, particles, halo communication, etc.
•  Also need abstractions for “system wide” functions

—  Resource sharing (for multi-scale, viz, tools, etc.)
—  Mapping of codes to machine

•  Scheduling, load-balancing, fault tolerance, etc.

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

Slide 12

Implementation of Abstractions
n  In addition to evolving collections of proxies that…

•  …characterize performance of codes on devices
•  …inform choices of underlying implementation technologies

—  Languages, APIs, run-time systems, etc (e.g. OpenACC, MPI, Co-Op, etc.)

n  We implement abstractions…
•  …on top of the technologies proven by the proxies

—  Abstractions “compile” to underlying technology
•  …as libraries, run-time systems, domain-specific languages

—  Domain science, interoperability (resource sharing), system wide (Co-Op)

n  Well defined abstractions enable the 3 P’s
•  Portable…as the domain & machine model
•  Productive…more so than low-level APIs (e.g. CUDA, pthreads, etc.)
•  Performance…optimization enabled by domain knowledge

n  DSLs are a key strategy for implementing abstractions
•  Builds on Stanford’s work within their Pervasive Parallelism Lab

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

Molecular Dynamics (MD)

Interaction potentials determine both the physics and computer
science

•  Complex potentials are more accurate, but can require many more floating
point operations.

•  Locality of potential informs parallelization strategy, e.g. short-ranged
potentials require only point to point communication.

Particles interact via explicit
interatomic potentials and evolve in
time according to Newton’s
equations of motion:

€

fi = mi˙ ̇ r i = − ∇Vij
j
∑

€

˙ r i = pi /mi

€

˙ p i = fi

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

~ 20 atoms in each box
⇒  each atom interacts with 540 other atoms
⇒  However, only ~70 atoms lie within cutoff
⇒  Lots of wasted work
⇒  We need a means of rejecting atoms efficiently even

within this reduced set

Halo Region

Force calculation for “typical” metallic potentials (e.g.
embedded atom method, Finnis-Sinclair)

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

•  Available at https://github.com/exmatex/CoMD (LA-CC-11-119)"
•  (Analytic, pairwise) Lennard-Jones and (tabular, many-body) embedded

atom method potentials"
•  On-node implementations in C, OpenCL, and OpenMP"
•  Exploring alternative data layouts and programming models"
•  OpenCL: ∼10x speedup of full timestep on a 12-core Xeon, ~100x

speedup of position/velocity update kernels on ATI Cypress GPU"
•  MPI inter-node and OpenACC pragma versions near release"
•  On-the-fly centrosymmetry analysis and visualization"

–  OpenGL given pointer to GPU memory location where OpenCL stores atom positions,
avoiding unnecessary copying of results between CPU and GPU!

•  Worked closely with Intel MIC compiler team at Intel Labs’ June 2012
“Epoch Workshop”"

Single-scale proxy app: Co-designed
Molecular Dynamics (CoMD)!

Jamal Mohd-Yusof (LANL)

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Single-scale proxy app: Co-designed
Ginzburg-Landau (CoGL)!

•  Stand-alone meso-scale
simulation code"

•  Studies pattern formation in
ferroelastic materials using the
Ginzburg–Landau approach"

•  Models cubic-to-tetragonal
transitions under dynamic strain
loading"

•  Based on a nonlinear elastic free-
energy in terms of the appropriate
strain fields"

R. Ahluwalia, T. Lookman, and A. Saxena,
Acta Mater. 54, 2109 (2006).

Kipton Barros (LANL)

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Portable, parallel CoGL with in situ visualization!

•  Simulation code and in situ viz implemented
using PISTON, our portable, data-parallel viz
and analysis library built on NVIDIA’s Thrust
library"

•  Allows the exact same code to run efficiently on
all parallel architectures supported by backend
(currently including GPUs with CUDA and multi-
core CPUs with OpenMP)"

•  When running on GPUs, “interop” allows fast
rendering by eliminating unnecessary data
transfers"

•  Ongoing work: analysis operators, distributed
memory parallelism"

•  Separately, we have an OpenCL implementation
of CoGL"

Chris Sewell (LANL)

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

•  Given input microstructure and applied deformation, compute full-field response
in the form of stress states and anisotropic lattice reorientation due to
polycrystal plasticity."

•  Solve the set of non-linear"
 constitutive equations "
 iteratively for each grid point."
•  Determine admissible stress and strain rate at each grid point that satisfies the

equilibrium and compatibility condition."
•  Spatial variation is crucial to prediction of failure, such as crack initiation and

void nucleation."

VP-FFT: Viscoplastic Fast Fourier Transform!

Simulation Volume"

Macroscopic
System"

σ '(x) calculated at
each grid point"

R. A. Lebensohn, Acta Mater. 49, 2723-2737 (2001); 56, 3914-3926 (2008); A.D. Rollett et al., MSMSE, 18 074005 (2010).!

Microstructure"

ε x() = γo ms x()
s
∑

ms x() : "σ x()
τ o
s x()

#

$
%%

&

'
((

n

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Sedov	
 blast	
 wave	
 problem	

U
Dt
D 

•∇−= ρ
ρ

p
Dt
UD

•∇−=



ρ

€

De
Dt

= −p DV
Dt

Conservation of
mass"
Conservation of
momentum"

Conservation of
energy"

•  Represents coarse scale aspect of our scale bridging approach"
•  Initially created for DARPA UHPC work, now supported under LLNL

LDRD, Tri-Lab mini-Apps, and ExMatEx"
•  3k lines of code, including mesh and boundary conditions"

–  Lagrangian hydrodynamics!
–  Single simplified material model!

LULESH: Livermore Unstructured Lagrangian
Explicit Shock Hydrodynamics!

Jeff Keasler (LLNL)

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

•  Several programming models/languages are being explored"
–  Standard: OpenMP, MPI, CUDA!
–  New: Chapel (HPCS), Loci (functional/relational parallel model)!
–  Newer: Charm++ (Felix Wang, UIUC/LLNL), Liszt (Riyaz Haque, UCLA/LLNL)!
–  Proprietary: A++, Vista, etc.!

•  Refactoring possibilities are being explored"
–  Data layout tradeoffs, especially wrt threads!
–  Source code structure tradeoffs!
–  Hybrid Index Sets!
–  Source-to-source transformations!

•  Modeling efforts are underway"
–  SST, ASPEN for performance!
–  PerMA for fault tolerance and I/O!

LULESH is used to explore programming
models and portability across architectures!

Jeff Keasler (LLNL)

Liszt Example: Heat Conduction on Grid	

val	
 Position	
 =	
 FieldWithLabel[Vertex,Float3](“position”)	

val	
 Temperature	
 =	
 FieldWithConst[Vertex,Float](0.0f)	

val	
 Flux	
 =	
 FieldWithConst	
 [Vertex,Float](0.0f)	

val	
 JacobiStep	
 =	
 FieldWithConst[Vertex,Float](0.0f)	

var	
 i	
 =	
 0;	

while	
 (i	
 <	
 1000)	
 {	

	
 	
 for	
 (e	
 <-­‐	
 edges(mesh))	
 {	

	
 	
 	
 	
 val	
 v1	
 =	
 head(e)	

	
 	
 	
 	
 val	
 v2	
 =	
 tail(e)	

	
 	
 	
 	
 val	
 dP	
 =	
 Position(v1)	
 -­‐	
 Position(v2)	

	
 	
 	
 	
 val	
 dT	
 =	
 Temperature(v1)	
 -­‐	
 Temperature(v2)	

	
 	
 	
 	
 val	
 step	
 =	
 1.0f/(length(dP))	

	
 	
 	
 	
 Flux(v1)	
 +=	
 dT*step	

	
 	
 	
 	
 Flux(v2)	
 -­‐=	
 dT*step	

	
 	
 	
 	
 JacobiStep(v1)	
 +=	
 step	

	
 	
 	
 	
 JacobiStep(v2)	
 +=	
 step	

	
 	
 }	
 	

	
 	
 for	
 (p	
 <-­‐	
 vertices(mesh))	
 {	

	
 	
 	
 	
 Temperature(p)	
 +=	
 0.01f*Flux(p)/JacobiStep(p)	

	
 	
 }	

	
 	
 for	
 (p	
 <-­‐	
 vertices(mesh))	
 {	
 	

	
 	
 	
 	
 Flux(p)	
 =	
 0.f;	
 JacobiStep(p)	
 =	
 0.f;	
 	
 	

	
 	
 }	

	
 	
 i	
 +=	
 1	

}	

	

Mesh Elements	

	

Topology Functions	

	

Fields (Data storage)	

	

Parallelizable for	

H

F

E

C

B

D G
1

5

8

10

11
7

3

0

2

4
69

Ahttp://liszt.stanford.edu

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Embedded Domain-Specific Languages:
Liszt Architecture!

Runtime

Platform

Native
Compiler

Liszt Compiler

Scala Compiler

.scala Scala frontend

platform-independent analysisLiszt plugin

runtime-specific code gen

MPI CUDA pthreads

Cluster SMP GPU.mesh

MPI
app

partitioning

pthreads
app

coloring

CUDA
app
coloring

mpicxx c++ nvcc

http://liszt.stanford.edu

Euler	

 Navier-
Stokes	

FEM	

 Shallow
Water	

Mesh size	

 367k	

 668k	

 216k	

 327k	

Liszt	

 0.37s	

 1.31s	

 0.22s	

 3.30s	

C++	

 0.39s	

 1.55s	

 0.19s	

 3.34s	

(Scalar) runtime comparisons
between hand-tuned C++ and Liszt

Z. DeVito et al, SC`11

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

1012"

N
um

be
r o

f A
to

m
s"

109"

106"

103"

Timescale"
fs" ps" ns" µs" ms" s

Memory!

1015"

C
om

m
un

ic
at

io
n!

Source: DOE Exascale Initiative Technical Roadmap"

Clock speeds and bandwidths will
not increase substantially, so the
timescale challenge is going to
become increasingly critical.!

Fu
tu

re
 P

la
tfo

rm
s!

Time/length scales
accessible by MD"

Current trends will increase the length scales accessible
by molecular dynamics simulations!

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Embedded Scale-Bridging Algorithms!

•  To achieve this, we are developing a UQ-
driven adaptive physics refinement approach."

•  Coarse-scale simulations dynamically spawn
tightly coupled and self-consistent fine-scale
simulations as needed."

•  This task-based approach naturally maps to
exascale heterogeneity, concurrency, and
resiliency issues."

"

Moving refinement window!

Macroscale!

Velocity!

Mesoscale!Microscale!

•  Our goal is to introduce more detailed physics into computational
materials science applications in a way which escapes the traditional
synchronous SPMD paradigm and exploits the heterogeneity expected
in exascale hardware. "

"

•  E.g. dynamically computing activation energies for a kinetic Monte Carlo
model (“on-the-fly kMC”) for modeling radiation damage."

"

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

FSMs

CSM

*N. Barton et.al, ‘A call to arms for task parallelism in multi-scale
materials modeling,’ Int. J. Numer. Meth. Engng 2011; 86:744–764

Direct multi-scale embedding requires full
utilization of exascale concurrency and locality!

Brute force coupling (e.g. HMM =
Heterogeneous Multiscale Method):"

–  Full fine scale model (FSM, e.g. a
molecular dynamics or crystal
plasticity model) run for every zone
& time step of coarse scale model
(CSM, e.g. an ALE code)!

"

Adaptive Sampling*: "
–  Accumulate a database of FSM

results during a simulation run (or
suite) !

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Adaptive Sampling builds response on the fly!

Adaptive Sampling Database
Approximation models

built upon previous fine-
scale evaluation results

Input Space

•  Coarse scale model queries
database for fine-scale
material response"

•  If possible, approximate  
response from past 
evaluations"

•  Otherwise, perform fine  
scale evaluation"

•  Fine-scale  
evaluations grow  
database"

26

Queried point
close enough for

approximation

Query requiring a
new fine-scale
evaluation to
extend model

Query requiring a new
fine-scale evaluation to
construct a new model

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Direct multi-scale embedding requires full
utilization of exascale concurrency and locality!
•  Heterogeneous, hierarchical MPMD

algorithms map naturally to
heterogeneous, hierarchical
architectures"

•  Escape the traditional bulk
synchronous SPMD paradigm,
improve scalability and reduce
scheduling"

•  Task-based MPMD approach
leverages concurrency and
heterogeneity at exascale while
enabling novel data models, power
management, and fault tolerance
strategies"

FSMs

CSM

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

•  …but Co-Op (Cooperative Parallelism) programming model depends on Babel
runtime library, RMI, and C++ bindings; chasm; libparsifal; pthreads; etc."

N. R. Barton, J. Knap, A. Arsenlis, R. Becker, R. D. Hornung, and D. R. Jefferson.
Embedded polycrystal plasticity and adaptive sampling. Int. J. Plast. 24, 242-266 (2008)

•  TCP/IP-based RMI
(250 µs round-trip on
Linux/Infinband
clusters) deemed too
heavyweight for
“proxyization”. !

•  Should be viewed as a
successful proof-of-
concept demonstration,
used to provide
desiderata for
programming models &
runtime systems."

Adaptive sampling techniques have been
successfully demonstrated!

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

FS queries"

FS evaluations"

464 cores: 51x speedup"

2272 cores: 97x speedup"

“A call to arms for task parallelism”!

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

The Adaptive Sampling (AS) proxy application enables the standalone
evaluation of fine-scale response data management options, addressing
questions such as:"

–  How should the database be redistributed as the calculation proceeds? !
–  Should the fine-scale model sometimes be re-evaluated anyway to avoid

communication? !
–  As different parts of the calculation “learn” the fine-scale response in their

respective locales, how can that knowledge be shared globally? !
–  What are the load balancing and scheduling consequences of the fact that

some elements will be performing new fine-scale evaluations while others
are (more quickly) obtaining the fine-scale response from the database?!

–  Do existing programming models and system software provide sufficient
capability to implement the “optimal” algorithm?!

–  Can the the task-based programming model inherent to adaptive sampling
enable new paradigms for resiliency?!

Bridging Scales: Adaptive Sampling proxy app!

Milo Dorr (LLNL)

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA
31

Code: Qbox/
LATTE

Motif: Particles
and
wavefunctions,
plane wave
DFT,
ScaLAPACK,
BLACS, and
custom parallel
3D FFTs

Prog. Model:
MPI + CUBLAS/
CUDA

Code: SPaSM/
ddcMD

Motif: Particles,
explicit time
integration,
neighbor and
linked lists,
dynamic load
balancing, parity
error recovery,
and in situ
visualization

Prog. Model:
MPI + Threads

Code: SEAKMC

Motif: Particles
and defects,
explicit time
integration,
neighbor and
linked lists, and
in situ
visualization

Prog. Model:
MPI + Threads

Code: AMPE/GL

Motif: Regular
and adaptive
grids, implicit
time integration,
real-space and
spectral
methods,
complex order
parameter

Prog. Model:
MPI

Code: ParaDis

Motif:
“segments”
Regular mesh,
implicit time
integration, fast
multipole
method

Prog. Model:
MPI

Code: VP-FFT

Motif: Regular
grids, tensor
arithmatic,
meshless image
processing,
implicit time
integration, 3D
FFTs.

Prog. Model:
MPI + Threads

Code: ALE3D

Motif: Regular
and irregular
grids, explicit
and implicit time
integration.

Prog. Model:
MPI + Threads

Ab-initio MD Long-time Phase Field Dislocation Crystal Continuum
Inter-atomic
forces, EOS

Defects and
interfaces,
nucleation

Defects and
defect

structures

Meso-scale
multi-phase

evolution

Meso-scale
strength

Meso-scale
material

response

Macro-scale
material

response

Our initial suite of proxy apps spans the range of scales
and motifs, including scale-bridging

1D HMM

3D
AS

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

•  Scheduling: dynamically scheduling groups of interacting codes and managing
their intercommunication (MPI cannot be used between separate jobs, need
remote direct memory access)"

•  Data sharing: managing data transfer, and translation, between codes and other
interacting tools (e.g. in situ visualization)"

•  Load Balancing: dynamically grow and shrink resources used by running codes.
Dynamically migrate tasks between computational resources"

•  Tool interoperability: use same mechanisms to integrate interoperable tools such
as in situ visualization and domain specific performance analysis"

•  Fault tolerance: detect and recover from frequent faults. Use advanced in-
memory, burst buffer, database, or task migration techniques. No free lunch—data
duplication costs"

•  Multi-task application construction: method to construct and orchestrate
dataflow and compute-flow across the whole system (e.g. Charm++, Java, CUDA
just-in-time, …)"

"

Exascale apps require a robust runtime
system that allows the app to dynamically
control computational work!

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

Summary

n  The objective of ExMatEx is to establish the interrelationship
between algorithms, system software, and hardware required
to develop a multiphysics exascale simulation framework for
modeling materials subjected to extreme mechanical and
radiation environments.

n  Initial single-scale and scale-bridging proxy apps have been
established with multiple instantiations (data structures, etc).

n  We are actively exploring alternative programming models,
languages, and runtime systems, and welcome collaboration,
students, and postdocs.

n  For more…

33!

information: http://exmatex.lanl.gov
 exmatexleads@lanl.gov

proxy apps: https://github.com/exmatex

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

Closing thoughts (“languages” ~ “models”)

“There are only two kinds of programming languages:
those people always bitch about and those nobody
uses.” – Bjarne Stroustrup

“There is no programming language – no matter how
structured – that will prevent programmers from making
bad programs.” – Larry Flon

Slide 34

