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Abstract 
Computational materials scientists have been among the earliest and heaviest users of leadership-class 
supercomputers. The codes and algorithms which have been developed span a wide range of physical 
scales, and have been useful not only for gaining scientific insight, but also as testbeds for exploring new 
approaches for tacking evolving challenges, including massive (nearly million-way) concurrency, an 
increased need for fault and power management, and data bottlenecks. As examples, I will describe our 
classical molecular dynamics simulations as early users on the LLNL BG/L and LANL Roadrunner 
platforms, including in situ analysis and visualization of trillion-atom simulations. Multiscale, or scale-
bridging, techniques are attractive from both materials science and computational perspectives, 
particularly as we look ahead from the current petascale era towards the exascale platforms expected to 
be deployed by the end of this decade. In particular, the increasingly heterogeneous and hierarchical 
nature of computer architectures demands that algorithms, programming models, and tools must mirror 
these characteristics if they are to thrive in this environment.  Given the increasing complexity of such 
high-performance computing ecosystems (architectures, software stack, and application codes), 
computational “co-design” is recognized to be critical as we move from current petascale to exascale 
supercomputers over the rest of this decade. The Exascale Co-design Center for Materials in 
Extreme Environments (ExMatEx) is an effort to do this by initiating an early and extensive collaboration 
between computational materials scientists, computer scientists, and hardware manufacturers. Our goal 
is to develop the algorithms for modeling materials subjected to extreme mechanical and radiation 
environments, and the necessary programming models and runtime systems (middleware) to enable their 
execution; and also influence potential architecture design choices for future exascale systems. 
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Exascale Co-design Center for Materials in Extreme 
Environments 
n  One of three* DOE/SC/ASCR co-design centers 

started in August 2011 
Large scale collaborations between national labs, 
academia, and vendors 
*Others are: CESAR (nuclear energy), ExaCT (combustion) 

n  Our goal is to establish the relationships between 
algorithms, software stack, and architectures 
needed to enable exascale-ready materials science 
apps in ~2020. 

n  We will exploit hierarchical, heterogeneous 
architectures to achieve more realistic large-scale 
simulations with adaptive physics refinement. 
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Code: Qbox/
LATTE 
 
Motif: Particles 
and 
wavefunctions, 
plane wave 
DFT, 
ScaLAPACK, 
BLACS, and 
custom parallel 
3D FFTs 
 
Prog. Model: 
MPI + CUBLAS/
CUDA 

Code: SPaSM/
ddcMD 
 
Motif: Particles, 
explicit time 
integration, 
neighbor and 
linked lists, 
dynamic load 
balancing, parity 
error recovery, 
and in situ 
visualization 
 
Prog. Model: 
MPI + X 

Code: SEAKMC 
 
 
Motif: Particles 
and defects, 
explicit time 
integration, 
neighbor and 
linked lists, and 
in situ 
visualization 
 
Prog. Model: 
MPI + Threads 

Code: AMPE/GL 
 
 
Motif: Regular 
and adaptive 
grids, implicit 
time integration, 
real-space and 
spectral 
methods, 
complex order 
parameter 
 
Prog. Model: 
MPI 

Code: ParaDis 
 
 
Motif: 
“segments” 
Regular mesh, 
implicit time 
integration, fast 
multipole 
method 
 
Prog. Model: 
MPI 

Code: VP-FFT 
 
 
Motif: Regular 
grids, tensor 
arithmatic, 
meshless image 
processing, 
implicit time 
integration, 3D 
FFTs. 
 
Prog. Model: 
MPI + Threads 

Code: ALE3D 
 
 
Motif: Regular 
and irregular 
grids,  explicit 
and implicit time 
integration. 
 
Prog. Model: 
MPI + Threads 
 

Ab-initio MD Long-time Phase Field Dislocation Crystal Continuum 
Inter-atomic 
forces, EOS 

Defects and 
interfaces, 
nucleation 

Defects and 
defect 

structures 

Meso-scale 
multi-phase 

evolution 

Meso-scale 
strength 

Meso-scale 
material 

response 

Macro-scale 
material 

response 

Computational Materials Science spans a wide range of 
time/length scales, each requiring different models 

For a recent upscaling example, see: N. Barton et al, “A multiscale strength model 
for extreme loading conditions,” J. Appl. Phys. 109, 073501 (2011) 



A wide range of applications have been studied with 
SPaSM: 1993-2012 covers 
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Agile proxy application development 

n  Proxy apps for single-scale SPMD applications (e.g. molecular dynamics) will be 
used to assess node-level issues including: 

—  Data structures 
—  Hierarchical memory storage and access 
—  Power management strategies 
—  Node-level performance 

n  Asynchronous task-based MPMD scale-bridging proxy apps will be used to 
optimize: 

—  System-level data movement 
—  Resilience (fault management) 
—  Load balancing techniques 
—  Performance scalability 

n  These proxy apps are not static entities, but the central mechanism for our co-
design process. 

n  Application, software, and hardware communities analyze and respond to trade-
offs with new requirements and capabilities, both from and to the application.  
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Agile proxy application development 
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n  Initial proxy specification & reference implementation 
•  Canonical serial implementation of “whole code” to extent possible 

—  Baseline for vendor interaction and subsequent “new” 
implementations 

—  Needed for “holistic” analysis—production codes too big 
—  Provided by domain code developer—trimmed (?) production code 
—  Open sourced along with suitable documentation 

•  Assistance from domain science developers to extract “core” proxies 
—  Kernels, halo exchange, data sharing, etc. 

n  Use of proxies to explore language and hardware space 
•  Language & Model: data parallel, task parallel, multi-core, GPU, etc. 

—  Proxies for experimentation and analysis 
—  Proxies for architecture simulation 

•  Coding: using today’s available APIs and languages, e.g. CUDA, TBB, 
OpenMP, MPI, ArBB, Co-Op, Chapel, Charm++, OpenACC, OpenCL, etc. 
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Where we are now, and where we are headed 

n  MPI+X for single-scale materials codes will dominate for current 
(Sequoia/Mira and Titan/Blue Waters) and next-generation ~2015 
machines (e.g. ASC Trinity), but will they for exascale? 

Slide 8 
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n  (Inter-Node) System-level. No shared memory.  Traditionally uses MPI to 
communicate data between disjoint address spaces. 

n  (Intra-Node) Cores.  Modern nodes have multiple CPU cores.  The work needs to be 
distributed across them.  Old fashioned MPI is one option, but this increases surface 
to volume.  Solutions such as OpenMP that acknowledge the shared address space 
(possibly NUMA) among the cores are probably preferred, especially in new code. 

n  (Intra-Node) Threads.  Modern cores are supporting multiple hardware threads per 
node.  Among other things, multiple threads per core cover latencies since some 
threads can typically proceed while others are stalled.  Multiple threads may allow for 
better register usage, reduced pipeline stalls, etc. 

n  (Intra-Node) SIMD.  We are now seeing quad-double SIMD units on Intel and AMD 
hardware as well as BG/Q.  Memory access need to be aligned to allow vector 
registers to be filled efficiently.  Throwing away SIMD instructions is instantly giving 
away a factor of 4 in performance.  On GPUs, warps are rather like SIMD instructions 
since all threads in a warp execute the same instruction. 

n  (Intra-Node) Functional Units.  BG/Q has both an integer and a floating point unit 
for each core.  It is the integer unit that loads data so in order to do useful processing 
you need to keep both active (to both load and process data).  Note that any thread 
can only issue an instruction to one of the units per cycle so at least two threads are 
needed to fully exploit the units.  It is also important to structure algorithms so that 
the use of the functional units is balanced. 

 Petascale (exascale) application developers must 
optimize for a complex parallel machine 

9 
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Where we are now, and where we are headed 

n  MPI+X for single-scale materials codes will dominate for current 
(Sequoia/Mira and Titan/Blue Waters) and next-generation ~2015 
machines (e.g. ASC Trinity), but will they for exascale? 

n  The challenge of programming models – particularly for emerging 
exascale architectures – is how much of this architectural complexity 
should be exposed to the application code developer. 
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Performance 
e.g. programming to the metal 

Portability 
e.g. domain-specific languages 

Productivity 
e.g. “magic compilers” 
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Abstractions 

n  Incremental progress towards three P’s 
•  Portability, productivity, performance 
•  Insulate project from exascale uncertainty 

—  Node & network architecture? 
—  Programming APIs, languages, environments? 
—  System runtime for scheduling, fault monitoring/recovery, etc. 

•  Allows vendors and others to innovate “underneath” 
•  There is no free lunch—someone must do the work (but not domain scientists) 

n  Extract and document abstractions throughout entire system 
•  Early in project will focus on “domain science” abstractions 

—  E.g. meshes, particles, halo communication, etc. 
•  Also need abstractions for “system wide” functions 

—  Resource sharing (for multi-scale, viz, tools, etc.) 
—  Mapping of codes to machine 

•  Scheduling, load-balancing, fault tolerance, etc. 
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Implementation of Abstractions 
n  In addition to evolving collections of proxies that… 

•  …characterize performance of codes on devices 
•  …inform choices of underlying implementation technologies 

—  Languages, APIs, run-time systems, etc (e.g. OpenACC, MPI, Co-Op, etc.) 

n  We implement abstractions… 
•  …on top of the technologies proven by the proxies 

—  Abstractions “compile” to underlying technology 
•  …as libraries, run-time systems, domain-specific languages 

—  Domain science, interoperability (resource sharing), system wide (Co-Op) 

n  Well defined abstractions enable the 3 P’s 
•  Portable…as the domain & machine model 
•  Productive…more so than low-level APIs (e.g. CUDA, pthreads, etc.) 
•  Performance…optimization enabled by domain knowledge 

n  DSLs are a key strategy for implementing abstractions 
•  Builds on Stanford’s work within their Pervasive Parallelism Lab 
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Molecular Dynamics (MD) 

Interaction potentials determine both the physics and computer 
science 

•  Complex potentials are more accurate, but can require many more floating 
point operations. 

•  Locality of potential informs parallelization strategy, e.g. short-ranged 
potentials require only point to point communication. 

Particles interact via explicit 
interatomic potentials and evolve in 
time according to Newton’s 
equations of motion: 

€ 

fi = mi˙ ̇ r i = − ∇Vij
j
∑

€ 

˙ r i = pi /mi

€ 

˙ p i = fi
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~ 20 atoms in each box 
⇒  each atom interacts with 540 other atoms 
⇒  However, only ~70 atoms lie within cutoff 
⇒  Lots of wasted work 
⇒  We need a means of rejecting atoms efficiently even 

within this reduced set  

Halo Region 

Force calculation for “typical” metallic potentials (e.g. 
embedded atom method, Finnis-Sinclair) 
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•  Available at https://github.com/exmatex/CoMD (LA-CC-11-119)"
•  (Analytic, pairwise) Lennard-Jones and (tabular, many-body) embedded 

atom method potentials"
•  On-node implementations in C, OpenCL, and OpenMP"
•  Exploring alternative data layouts and programming models"
•  OpenCL: ∼10x speedup of full timestep on a 12-core Xeon, ~100x 

speedup of position/velocity update kernels on ATI Cypress GPU"
•  MPI inter-node and OpenACC pragma versions near release"
•  On-the-fly centrosymmetry analysis and visualization"

–  OpenGL given pointer to GPU memory location where OpenCL stores atom positions, 
avoiding unnecessary copying of results between CPU and GPU!

•  Worked closely with Intel MIC compiler team at Intel Labs’ June 2012 
“Epoch Workshop”"

Single-scale proxy app: Co-designed 
Molecular Dynamics (CoMD)!

Jamal Mohd-Yusof (LANL) 
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Single-scale proxy app: Co-designed 
Ginzburg-Landau (CoGL)!

•  Stand-alone meso-scale 
simulation code"

•  Studies pattern formation in 
ferroelastic materials using the 
Ginzburg–Landau approach"

•  Models cubic-to-tetragonal 
transitions under dynamic strain 
loading"

•  Based on a nonlinear elastic free-
energy in terms of the appropriate 
strain fields"

R. Ahluwalia, T. Lookman, and A. Saxena, 
Acta Mater. 54, 2109 (2006). 

Kipton Barros (LANL) 
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Portable, parallel CoGL with in situ visualization!

•  Simulation code and in situ viz implemented 
using PISTON, our portable, data-parallel viz 
and analysis library built on NVIDIA’s Thrust 
library"

•  Allows the exact same code to run efficiently on 
all parallel architectures supported by backend 
(currently including GPUs with CUDA and multi-
core CPUs with OpenMP)"

•  When running on GPUs, “interop” allows fast 
rendering by eliminating unnecessary data 
transfers"

•  Ongoing work: analysis operators, distributed 
memory parallelism"

•  Separately, we have an OpenCL implementation 
of CoGL"

Chris Sewell (LANL) 
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•  Given input microstructure and applied deformation, compute full-field response 
in the form of stress states and anisotropic lattice reorientation due to 
polycrystal plasticity."

•  Solve the set of non-linear"
   constitutive equations "
   iteratively for each grid point."
•  Determine admissible stress and strain rate at each grid point that satisfies the 

equilibrium and compatibility condition."
•  Spatial variation is crucial to prediction of failure, such as crack initiation and 

void nucleation."

VP-FFT: Viscoplastic Fast Fourier Transform!

Simulation Volume"

Macroscopic 
System"

σ '(x) calculated at 
each grid point"

R. A. Lebensohn, Acta Mater. 49, 2723-2737 (2001); 56, 3914-3926 (2008); A.D. Rollett et al., MSMSE, 18 074005 (2010).!

Microstructure"

ε x( ) = γo ms x( )
s
∑

ms x( ) : "σ x( )
τ o
s x( )
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Sedov	
  blast	
  wave	
  problem	
  

U
Dt
D 

•∇−= ρ
ρ

p
Dt
UD

•∇−=



ρ

€ 

De
Dt

= −p DV
Dt

Conservation of 
mass"
Conservation of 
momentum"

Conservation of 
energy"

•  Represents coarse scale aspect of our scale bridging approach"
•  Initially created for DARPA UHPC work, now supported under LLNL 

LDRD, Tri-Lab mini-Apps, and ExMatEx"
•  3k lines of code, including mesh and boundary conditions"

–  Lagrangian hydrodynamics!
–  Single simplified material model!

LULESH: Livermore Unstructured Lagrangian 
Explicit Shock Hydrodynamics!

Jeff Keasler (LLNL) 
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•  Several programming models/languages are being explored"
–  Standard: OpenMP, MPI, CUDA!
–  New: Chapel (HPCS), Loci (functional/relational parallel model)!
–  Newer: Charm++ (Felix Wang, UIUC/LLNL), Liszt (Riyaz Haque, UCLA/LLNL)!
–  Proprietary: A++, Vista, etc.!

•  Refactoring possibilities are being explored"
–  Data layout tradeoffs, especially wrt threads!
–  Source code structure tradeoffs!
–  Hybrid Index Sets!
–  Source-to-source transformations!

•  Modeling efforts are underway"
–  SST, ASPEN for performance!
–  PerMA for fault tolerance and I/O!

LULESH is used to explore programming 
models and portability across architectures!

Jeff Keasler (LLNL) 



Liszt Example: Heat Conduction on Grid	


val	
  Position	
  =	
  FieldWithLabel[Vertex,Float3](“position”)	
  
val	
  Temperature	
  =	
  FieldWithConst[Vertex,Float](0.0f)	
  
val	
  Flux	
  =	
  FieldWithConst	
  [Vertex,Float](0.0f)	
  
val	
  JacobiStep	
  =	
  FieldWithConst[Vertex,Float](0.0f)	
  
var	
  i	
  =	
  0;	
  
while	
  (i	
  <	
  1000)	
  {	
  
	
  	
  for	
  (e	
  <-­‐	
  edges(mesh))	
  {	
  
	
  	
  	
  	
  val	
  v1	
  =	
  head(e)	
  
	
  	
  	
  	
  val	
  v2	
  =	
  tail(e)	
  
	
  	
  	
  	
  val	
  dP	
  =	
  Position(v1)	
  -­‐	
  Position(v2)	
  
	
  	
  	
  	
  val	
  dT	
  =	
  Temperature(v1)	
  -­‐	
  Temperature(v2)	
  
	
  	
  	
  	
  val	
  step	
  =	
  1.0f/(length(dP))	
  
	
  	
  	
  	
  Flux(v1)	
  +=	
  dT*step	
  
	
  	
  	
  	
  Flux(v2)	
  -­‐=	
  dT*step	
  
	
  	
  	
  	
  JacobiStep(v1)	
  +=	
  step	
  
	
  	
  	
  	
  JacobiStep(v2)	
  +=	
  step	
  
	
  	
  }	
  	
  
	
  	
  for	
  (p	
  <-­‐	
  vertices(mesh))	
  {	
  
	
  	
  	
  	
  Temperature(p)	
  +=	
  0.01f*Flux(p)/JacobiStep(p)	
  
	
  	
  }	
  
	
  	
  for	
  (p	
  <-­‐	
  vertices(mesh))	
  {	
  	
  
	
  	
  	
  	
  Flux(p)	
  =	
  0.f;	
  JacobiStep(p)	
  =	
  0.f;	
  	
  	
  
	
  	
  }	
  
	
  	
  i	
  +=	
  1	
  
}	
  
	
  

Mesh Elements	


	


Topology Functions	


	


Fields (Data storage)	


	


Parallelizable for	
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Ahttp://liszt.stanford.edu
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Embedded Domain-Specific Languages: 
Liszt Architecture!

Runtime

Platform

Native 
Compiler

Liszt Compiler

Scala Compiler

.scala Scala frontend

platform-independent analysisLiszt plugin

runtime-specific code gen

MPI CUDA pthreads 

Cluster SMP GPU.mesh

MPI
app

partitioning

pthreads
app

coloring

CUDA 
app
coloring

mpicxx c++ nvcc

http://liszt.stanford.edu


Euler	

 Navier-
Stokes	



FEM	

 Shallow 
Water	



Mesh size	

 367k	

 668k	

 216k	

 327k	



Liszt	

 0.37s	

 1.31s	

 0.22s	

 3.30s	



C++	

 0.39s	

 1.55s	

 0.19s	

 3.34s	



(Scalar) runtime comparisons 
between hand-tuned C++ and Liszt 

Z. DeVito et al, SC`11 
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1012"
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Timescale"
fs" ps" ns" µs" ms" s

Memory!

1015"

C
om

m
un
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at
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n!

Source: DOE Exascale Initiative Technical Roadmap"

Clock speeds and bandwidths will 
not increase substantially, so the 
timescale challenge is going to 
become increasingly critical.!

Fu
tu

re
 P

la
tfo

rm
s!

Time/length scales 
accessible by MD"

Current trends will increase the length scales accessible 
by molecular dynamics simulations!
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Embedded Scale-Bridging Algorithms!

•  To achieve this, we are developing a UQ-
driven adaptive physics refinement approach."

•  Coarse-scale simulations dynamically spawn 
tightly coupled and self-consistent fine-scale 
simulations as needed."

•  This task-based approach naturally maps to 
exascale heterogeneity, concurrency, and 
resiliency issues."

"

Moving refinement window!

Macroscale!

Velocity!

Mesoscale!Microscale!

•  Our goal is to introduce more detailed physics into computational 
materials science applications in a way which escapes the traditional 
synchronous SPMD paradigm and exploits the heterogeneity expected 
in exascale hardware. "

"

•  E.g. dynamically computing activation energies for a kinetic Monte Carlo 
model (“on-the-fly kMC”) for modeling radiation damage."

"
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FSMs 

CSM 

*N. Barton et.al, ‘A call to arms for task parallelism in multi-scale 
materials modeling,’ Int. J. Numer. Meth. Engng 2011; 86:744–764 

Direct multi-scale embedding requires full 
utilization of exascale concurrency and locality!

Brute force coupling (e.g. HMM = 
Heterogeneous Multiscale Method):"

–  Full fine scale model (FSM, e.g. a 
molecular dynamics or crystal 
plasticity model) run for every zone 
& time step of coarse scale model 
(CSM, e.g. an ALE code)!

"

Adaptive Sampling*: "
–  Accumulate a database of FSM 

results during a simulation run (or 
suite) !
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Adaptive Sampling builds response on the fly!

Adaptive Sampling Database 
Approximation models 

built upon previous fine-
scale evaluation results  

Input Space 

•  Coarse scale model queries 
database for fine-scale 
material response"

•  If possible, approximate  
response from past 
evaluations"

•  Otherwise, perform fine  
scale evaluation"

•  Fine-scale  
evaluations grow  
database"

26 

Queried point 
close enough for 

approximation 

Query requiring a 
new fine-scale 
evaluation to 
extend model 

Query requiring a new 
fine-scale evaluation to 
construct a new model 
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Direct multi-scale embedding requires full 
utilization of exascale concurrency and locality!
•  Heterogeneous, hierarchical MPMD 

algorithms map naturally to 
heterogeneous, hierarchical 
architectures"

•  Escape the traditional bulk 
synchronous SPMD paradigm, 
improve scalability and reduce 
scheduling"

•  Task-based MPMD approach 
leverages concurrency and 
heterogeneity at exascale while 
enabling novel data models, power 
management, and fault tolerance 
strategies"

FSMs 

CSM 
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•  …but Co-Op (Cooperative Parallelism) programming model depends on Babel 
runtime library, RMI, and C++ bindings; chasm; libparsifal; pthreads; etc."

N. R. Barton, J. Knap, A. Arsenlis, R. Becker, R. D. Hornung, and D. R. Jefferson. 
Embedded polycrystal plasticity and adaptive sampling. Int. J. Plast. 24, 242-266 (2008) 

•  TCP/IP-based RMI 
(250 µs round-trip on 
Linux/Infinband 
clusters) deemed too 
heavyweight for 
“proxyization”. !

•  Should be viewed as a 
successful proof-of-
concept demonstration, 
used to provide 
desiderata for 
programming models & 
runtime systems."

Adaptive sampling techniques have been 
successfully demonstrated!
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FS queries"

FS evaluations"

464 cores: 51x speedup"

2272 cores: 97x speedup"

“A call to arms for task parallelism”!
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The Adaptive Sampling (AS) proxy application enables the standalone 
evaluation of fine-scale response data management options, addressing 
questions such as:"

–  How should the database be redistributed as the calculation proceeds?  !
–  Should the fine-scale model sometimes be re-evaluated anyway to avoid 

communication?  !
–  As different parts of the calculation “learn” the fine-scale response in their 

respective locales, how can that knowledge be shared globally?  !
–  What are the load balancing and scheduling consequences of the fact that 

some elements will be performing new fine-scale evaluations while others 
are (more quickly) obtaining the fine-scale response from the database?!

–  Do existing programming models and system software provide sufficient 
capability to implement the “optimal” algorithm?!

–  Can the the task-based programming model inherent to adaptive sampling 
enable new paradigms for resiliency?!

Bridging Scales: Adaptive Sampling proxy app!

Milo Dorr (LLNL) 
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Code: Qbox/
LATTE 
 
Motif: Particles 
and 
wavefunctions, 
plane wave 
DFT, 
ScaLAPACK, 
BLACS, and 
custom parallel 
3D FFTs 
 
Prog. Model: 
MPI + CUBLAS/
CUDA 

Code: SPaSM/
ddcMD 
 
Motif: Particles, 
explicit time 
integration, 
neighbor and 
linked lists, 
dynamic load 
balancing, parity 
error recovery, 
and in situ 
visualization 
 
Prog. Model: 
MPI + Threads 

Code: SEAKMC 
 
 
Motif: Particles 
and defects, 
explicit time 
integration, 
neighbor and 
linked lists, and 
in situ 
visualization 
 
Prog. Model: 
MPI + Threads 

Code: AMPE/GL 
 
 
Motif: Regular 
and adaptive 
grids, implicit 
time integration, 
real-space and 
spectral 
methods, 
complex order 
parameter 
 
Prog. Model: 
MPI 

Code: ParaDis 
 
 
Motif: 
“segments” 
Regular mesh, 
implicit time 
integration, fast 
multipole 
method 
 
Prog. Model: 
MPI 

Code: VP-FFT 
 
 
Motif: Regular 
grids, tensor 
arithmatic, 
meshless image 
processing, 
implicit time 
integration, 3D 
FFTs. 
 
Prog. Model: 
MPI + Threads 

Code: ALE3D 
 
 
Motif: Regular 
and irregular 
grids,  explicit 
and implicit time 
integration. 
 
Prog. Model: 
MPI + Threads 
 

Ab-initio MD Long-time Phase Field Dislocation Crystal Continuum 
Inter-atomic 
forces, EOS 

Defects and 
interfaces, 
nucleation 

Defects and 
defect 

structures 

Meso-scale 
multi-phase 

evolution 

Meso-scale 
strength 

Meso-scale 
material 

response 

Macro-scale 
material 

response 

Our initial suite of proxy apps spans the range of scales 
and motifs, including scale-bridging 

1D HMM 

3D 
AS 



Operated by the Los Alamos National Security, LLC for the DOE/NNSA 

•  Scheduling: dynamically scheduling groups of interacting codes and managing 
their intercommunication (MPI cannot be used between separate jobs, need 
remote direct memory access)"

•  Data sharing: managing data transfer, and translation, between codes and other 
interacting tools (e.g. in situ visualization)"

•  Load Balancing: dynamically grow and shrink resources used by running codes. 
Dynamically migrate tasks between computational resources"

•  Tool interoperability: use same mechanisms to integrate interoperable tools such 
as in situ visualization and domain specific performance analysis"

•  Fault tolerance: detect and recover from frequent faults. Use advanced in-
memory, burst buffer, database, or task migration techniques. No free lunch—data 
duplication costs"

•  Multi-task application construction: method to construct and orchestrate 
dataflow and compute-flow across the whole system (e.g. Charm++, Java, CUDA 
just-in-time, …)"

"

Exascale apps require a robust runtime 
system that allows the app to dynamically 
control computational work!
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Summary 

n  The objective of ExMatEx is to establish the interrelationship 
between algorithms, system software, and hardware required 
to develop a multiphysics exascale simulation framework for 
modeling materials subjected to extreme mechanical and 
radiation environments.  

n  Initial single-scale and scale-bridging proxy apps have been 
established with multiple instantiations (data structures, etc). 

n  We are actively exploring alternative programming models, 
languages, and runtime systems, and welcome collaboration, 
students, and postdocs. 

n  For more… 

33!

information:  http://exmatex.lanl.gov 
  exmatexleads@lanl.gov  

proxy apps:  https://github.com/exmatex   
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Closing thoughts (“languages” ~ “models”) 

 

“There are only two kinds of programming languages: 
those people always bitch about and those nobody 
uses.” – Bjarne Stroustrup 

 

“There is no programming language – no matter how 
structured – that will prevent programmers from making 
bad programs.” – Larry Flon 
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