
1 

Charj: Compiler Supported Language with an 
Adaptive  Runtime 
 

Laxmikant (Sanjay) Kale,  
http://charm.cs.illinois.edu 
 
Based on Aaron Becker’s thesis work 
 



2 

Thesis 

Simple compiler support and basic static analysis can, when 
paired with a sophisticated and feature-rich runtime system, 
significantly improve productivity. 
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Approach 

• Combine compiler technology with a rich runtime system to increase 
productivity without harming performance 

• Better safety checks by incorporating programming model 
semantic knowledge into compiler 

• Static analysis allows more enforcement and can provide 
optimizations that are impossible at the library level 

• Tightly integrate with multiple programming models 

• Add language-level support for rich runtime features 

Where can I find a rich adaptive RTS? 
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The Charj Language 
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Compiler Infrastructure 

• Multi-pass compiler written in Java, uses ANTLR compiler 
construction tool 

• Simple operations use ANTLR’s AST recognition and rewriting 
features 

• More complex operations operate directly on the AST and construct 
an explicit CFG 

• Supports inter-procedural data-flow analysis 

• Compiler driver takes .cj input, produces C++ and .ci files, and 
translates and compiles the output source 
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Problems with Charm 

• Most of your code is only seen by a C++ compiler 

• No way to do lots of simple things, especially: 

• Enforce Charm semantics 

• Do compile-time analysis and optimization 

• Moving model-specific features into the interface file works, but it’s 
difficult and inflexible. 
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Charj Design Principles 

• Keep it simple 

• Minimize new syntax 

• Distinguish between local and remote operations 

• Integrate tightly with the runtime 
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Productivity Benefits 

• Enforcement of programming model semantics by the compiler (e.g. 
assignment of readonly variables) 

• Elimination of redundant program information 

• Improved messages for Charm-specific syntax errors 

• Clear syntactic distinction between remote and local operations 

• Optimizations can be done by compiler instead of by hand 
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Example: Readonly Variables 

int n; // readonly variable 
... 
n = 17; // Ok if we’re in a 
        // mainchare constructor. 
        // Silent bug otherwise. 
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Example: Readonly Variables 

readonly int n; 
... 
n = 17; // Compiler will notify 
        // the programmer of 
        // illegal assignments 

In Charj: 
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Example: Custom Reducers 

CkReductionMsg* _my_reducer( 
        int nMsg, CkReductionMsg** msgs) 
{ 
    MyType* accum = new MyType(); 
    for (int i=0; i<nMsg; ++i) { 
        MyType* x; 
        PUP::fromMem p(msgs[i]->getData()); 
        p | *x; 
        accum->reduce(x); 
    } 
    return CkReductionMsg::buildNew(...); 
} 
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Example: Custom Reducers 

// .ci 
initcall void _register_my_reducer(void); 
 
// .cc 
CkReduction::reducerType _my_reducer_type; 
void _register_my_reducer(void) 
{ 
    _my_reducer_type = 
      CkReduction::addReducer(_my_reducer); 
} 
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Example: Custom Reducers in Charj 

reducer<MyType> my_reducer { 
    my_reducer() { accum = new MyType(); } 
    reduce(MyType x) { accum.reduce(x); } 
} 
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Embedded Programming Models 
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Structured Dagger 

• Coordination mini-language implemented on the Charm runtime 

• Implemented as library + translator, functions containing SDAG are 
put into Charm interface files, translator emits C++ 

• Allows the programmer to express the parallel structure of an 
object’s lifetime without the need for threading or blocking 
constructs 

• Allows clear, concise, efficient code 



Stencil code with sdag 
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entry void stencil() 
{ 
    for (int i=0; i<N; ++i) { 
        sendStrips(); 
        overlap { 
            when getStripFromLeft(Strip s) { 
                processStripFromLeft(s); 
            } 
            when getStripFromRight(Strip s) { 
                processStripFromRight(s); 
            } 
        } 
        doStencil(); 
    } 
} 



Stencil: Message Driven Equivalent 
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entry void stencil() 
{ 
    i = 0; 
    mainLoop(); 
} 
 
void mainLoop() 
{ 
    leftStripReceived = false; 
    rightStripReceived = false; 
    if (i < N) { 
        sendStrips(); 
    } 
} 

entry void getStripFromLeft(Strip s) 
{ 
    processStripFromLeft(s); 
    leftStripReceived = true; 
    checkOverlapCompletion(); 
} 
 
entry void getStripFromRight(Strip s) 
{ 
    processStripFromRight(s); 
    rightStripReceived = true; 
    checkOverlapCompletion(); 
} 
 
void checkOverlapCompletion() 
{ 
    if (leftStripReceived && rightStripReceived) 
{ 
        doStencil(); 
        ++i; 
        mainLoop(); 
    } 
} 
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Improvements in Charj SDAG 

• Local variables 

• Free mixing of sequential constructs and SDAG constructs (no 
“atomic” blocks) 

• No redundant declarations for “when” triggers 

• No need for macro insertion or initialization calls during construction 
and migration 
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Multiphase Shared Arrays 

• Disciplined access to arrays in a partitioned global address space 

• Arrays go through phases, with synchronization between 

• In each phase, only a subset of accesses are legal (e.g. read-only, 
write-only, accumulate) 

A 
B 

C C C C 
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MSA: Original Implementation 

// MSA array A in write mode 
for (int i=0; i<N; ++i) 
   A[random()]++; 
 
A.sync(); // transition to read mode 
 
for (int i=0; i<N; ++i) 
    printf(“%d ”, A[i]; 
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MSA: Typed Handles 

// MSA array A in write mode 
MSA::Write whandle = A.getInitialWrite(); 
for (int i=0; i<N; ++i) 
    whandle(random())++; 
 
MSA::Read rhandle = whandle.syncToRead(); 
 
for (int i=0; i<N; ++i) 
   printf(“%d ”, rhandle(i)); 
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MSA: Charj Implementation 

// MSA array A in accumulate mode 
for (int i=0; i<N; ++i) 
    A[random()]++; 
 
A.syncToRead(); 
 
for (int i=0; i<N; ++i) 
    printf(“%d ”, A[i]); 
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Accelerated Entry Methods 

 

 

 

• Access to different types of accelerator hardware using a unified 
programming model and syntax 

• Programmer creates special accelerated entry methods using a 
variant of normal entry method syntax 

• Entry method is split into two pieces: body (can execute on host or 
on accelerator) and callback (host only) 

• Runtime system can execute them on either the host processor or 
on accelerator hardware 
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Accelerated Entry Methods 

entry [accel] void X(int n) 
[ readWrite : float A <impl_obj->A>, 
  readOnly : float B <impl_obj->B> ] 
{ 
   // ... 
} x_callback; 
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Accelerated Entry Methods 

entry [accel] void X(int n) 
[ readWrite : float A <impl_obj->A>, 
  readOnly : float B <impl_obj->B> ] 
{ 
   // ... 
} x_callback; 
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Accelerated Entry Methods 

accelerated entry void X(int n) { 
   // ... 
} x_callback; 
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Optimizations 
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Packing and Unpacking 

How do we communicate data 
structures in a parallel application? 
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MSA Strip Mining 

• MSAs are split into pages, and MSA accesses go through a local 
page cache 

• Generic array accesses must first check to see if the desired 
element is locally available, and if not, fetch it 

• Prefetching and raw array accesses are faster, but more work for 
the programmer 
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MSA Strip Mining 

for (int i=0; i<N; ++i) 
    x = f(A[i]); 
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MSA Strip Mining 

fetchPage(A, 0); 
for (int i=0; i<N/PAGE; ++i) { 
    if (i+1 < N/PAGE) 
        fetchPage(A, i+1); 
    waitForPage(A, i); 
    for (int j=i*PAGE; j<(i+1)*PAGE; ++j) 
        x = f(A.rawAccess(j)); 
} 
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Charj Application Suite 

• LU Decomposition 

• LeanMD (Molecular Dynamics) 

• Barnes-Hut 

• Jacobi Relaxation 
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Charj Application Suite 

Charm Charj % Reduction 
LU 187 135 28% 

LeanMD 941 683 27% 
Barnes-Hut 5174 3808 26% 

Jacobi 327 163 50% 

Source Lines of Code 
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Contributions 

• Demonstration of the thesis via the development of Charj programs 
that are simpler than their Charm equivalents 

• A language targeting the Charm runtime system that supports 
multiple embedded programming models. 

• A compiler for that language, supporting semantic checks and 
optimizations specific to Charj. 

• Embeddings of multiple DSLs based on the Charm runtime into 
Charj 

• A collection of Charj implementations of existing applications, which 
demonstrate the features of Charj. 
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Summary 

• By combining compiler techniques with a rich runtime system, we 
can improve programmer productivity without sacrificing 
performance 

• Improved syntax and semantic checks 

• Better integration of multiple programming models 

• Optimizations powered by static analysis 

More Info: http://charm.cs.illinois.edu/ 



Migratable objects programming model 

• Names for this model: 

• Overdecompostion approach 

• Object-based overdecomposition 

• Processor virtualization 

• Migratable-objects programming model 
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Object Based Over-decomposition: Charm++ 
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User View 

System implementation 

• Multiple “indexed collections” of C++ objects 
• Indices can be multi-dimensional and/or sparse 

• Programmer expresses communication between objects 
– with no reference to processors 



Adaptive Runtime Systems 
• Decomposing program into a large number of WUDUs empowers the 

RTS, which can: 

• Migrate WUDUs at will 

• Schedule DEBS at will 

• Instrument computation and communication at the level of these logical 
units 

• WUDU x communicates y bytes to WUDU z every iteration 

• SEB A has a high cache miss ratio 

• Maintain historical data to track changes in application behavior 

• Historical => previous iterations 

• E.g., to trigger load balancing 
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Over-decomposition and 
message-driven execution 

Migratability 

Introspective and adaptive 
runtime system 

Scalable Tools 
Automatic overlap, pefetch, 

compositionality 
Emulation for Perf 

Prediction 

Fault Tolerance 

Dynamic load balancing (topology-
aware, scalable) 

Temperature/power considerations 
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Message-driven execution model 
• Adaptive overlap of communication and computation 

• A strong principle of prediction for data and code use 

• Much stronger than principle of locality 

• Can use to scale memory wall: 

• Prefetching of needed data:  

• into scratch pad memories, for example 

8/27/2012 LBNL/LLNL 41 

Scheduler Scheduler 
Message Q Message Q 



Impact on communication 

• Current use of communication network: 

• Compute-communicate cycles in typical MPI apps 

• So, the network is used for a fraction of time,  

• and is on the critical path 

• So, current communication networks are over-engineered for by 
necessity 

• With overdecomposition 

• Communication is spread over an iteration 
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Compositionality 
• It is important to support parallel composition 

• For multi-module, multi-physics, multi-paradigm applications… 

• What I mean by parallel composition 

• B || C where B, C are independently developed modules 

• B is parallel module by itself, and so is C 

• Programmers who wrote B were unaware of C  

• No dependency between B and C 

• This is not supported well by MPI 

• Developers support it by breaking abstraction boundaries 

• E.g., wildcard recvs in module A to process messages for module B 

• Nor by OpenMP implementations:  
8/27/2012 LBNL/LLNL 43 
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Without message-driven execution (and 
virtualization), you get either: 

Space-division 

Time 

B 

C 
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OR: Sequentialization 

Time 

B 

C 
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Parallel Composition: A1; (B || C ); 
A2 

Recall: Different modules, written in different 
languages/paradigms, can overlap in time and on 
processors, without programmer having to worry 

about this explicitly 



Decomposition Independent of numCores 
• Rocket simulation example under traditional MPI 
 

 

 

 

 

 

 

• With migratable-objects:  
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Charm++ and CSE Applications 
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Enabling CS technology of parallel objects and intelligent runtime 
systems has led to several CSE collaborative applications 

Synergy 

Well-known Biophysics 
molecular simulations App  

Gordon Bell Award, 2002 

Computational 
Astronomy 

Nano-Materials.. 

ISAM 

CharmSimdemi
cs 

Stochastic 
Optimization 



Object Based Over-decomposition: AMPI 
• Each MPI process is implemented as a user-level thread 

• Threads are light-weight and migratable! 
• <1 microsecond context switch time, potentially >100k threads per core 

• Each thread is embedded in a charm++ object (chare) 

LBNL/LLNL 

Real 
Processors 

MPI 
processe

s 

Virtual 
Processo
rs (user-

level 
migratabl

e 
threads) 
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A quick Example:  
Weather Forecasting in BRAMS 

• Brams: Brazillian weather code (based on RAMS) 

• AMPI version (Eduardo Rodrigues, with Mendes and J. Panetta) 
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Baseline: 64 objects on 64 processors 
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Over-decomposition: 1024 objects on 64 
processors:  

Benefits from communication/computation 
overlap 
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With Load Balancing:  
1024 objects on 64 processors 

No overdecomp (64 threads) 4988 sec 
Overdecomp into 1024 threads 3713 sec 
Load balancing (1024 threads) 3367 sec 



SMP Performance on Titan(Dev) 
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Saving Cooling Energy 
• Easy: increase A/C setting 

• But: some cores may get too hot 

• Reduce frequency if temperature is high 

• Independently for each core or chip 

• This creates a load imbalance! 

• Migrate objects away from the slowed-down processors 

• Balance load using an existing strategy 

• Strategies take speed of processors into account 

• Recently implemented in experimental version 

• SC 2011 paper 

• Several new power/energy-related strategies 
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Fault Tolerance in Charm++/AMPI 

• Four Approaches: 

• Disk-based checkpoint/restart 

• In-memory double checkpoint/restart 

• Proactive object migration 

• Message-logging: scalable fault tolerance 

• Common Features: 

• Leverages object-migration capabilities 

• Based on dynamic runtime capabilities 
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In-memory double checkpointing 

• Is practical for many apps 

• Relatively small footprint at checkpoint time 

• Also, you can use non-volatile node-local storage (e.g. FLASH) 
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Checkpoint time is low: 4 milliseconds 
for MD,  

 essentially, live-data-permutation 
for any app  
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Restart time is low: 150 milliseconds on 64K 
cores,  

 detection time, and re-execution times 
not included  



HPC Challenge Competition 

• Conducted at Supercomputing 

• 2 parts:  

• Class I: machine performance 

• Class II: programming model productivity 

• Has been typically split in two sub-awards 

• We implemented in Charm++ 

• LU decomposition 

• RandomAccess 

• LeanMD 

• Barnes-Hut 

• Main competitors this year: 
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Strong Scaling on Hopper for LeanMD 
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Gemini Interconnect, much 
less noisy 



CharmLU: productivity and performance 

• 1650 lines of source 

• 67% of peak on Jaguar 
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Barnes-Hut 
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High Density Variation with a Plummer 
distribution of particles 



Charm++ interoperates with MPI 

Charm++ 
Control 
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Summary of RTS 

• Charm++ is a sophisticated programming “language”,  

• It is supported by a rich adaptive runtime system, which supports:   

• Adaptive overlap of communication/computation 

• Parallel composition 

• Dynamic load balancing 

• Fault tolerance 

• Is a production-quality system used by many apps in routine use by CSE 
scientists 

• Good candidate to verify our thesis 

8/27/2012 LBNL/LLNL 66 


	Charj: Compiler Supported Language with an Adaptive  Runtime�
	Thesis
	Approach
	Slide Number 4
	The Charj Language
	Compiler Infrastructure
	Problems with Charm
	Charj Design Principles
	Productivity Benefits
	Example: Readonly Variables
	Example: Readonly Variables
	Example: Custom Reducers
	Example: Custom Reducers
	Example: Custom Reducers in Charj
	Embedded Programming Models
	Structured Dagger
	Stencil code with sdag
	Stencil: Message Driven Equivalent
	Improvements in Charj SDAG
	Multiphase Shared Arrays
	MSA: Original Implementation
	MSA: Typed Handles
	MSA: Charj Implementation
	Accelerated Entry Methods
	Accelerated Entry Methods
	Accelerated Entry Methods
	Accelerated Entry Methods
	Optimizations
	Packing and Unpacking
	MSA Strip Mining
	MSA Strip Mining
	MSA Strip Mining
	Charj Application Suite
	Charj Application Suite
	Contributions
	Summary
	Migratable objects programming model
	Object Based Over-decomposition: Charm++
	Adaptive Runtime Systems
	Slide Number 40
	Message-driven execution model
	Impact on communication
	Compositionality
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Decomposition Independent of numCores
	Charm++ and CSE Applications
	Object Based Over-decomposition: AMPI
	A quick Example: �Weather Forecasting in BRAMS
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	SMP Performance on Titan(Dev)
	Saving Cooling Energy
	Fault Tolerance in Charm++/AMPI
	In-memory double checkpointing
	Slide Number 59
	Slide Number 60
	HPC Challenge Competition
	Strong Scaling on Hopper for LeanMD
	CharmLU: productivity and performance
	Barnes-Hut
	Charm++ interoperates with MPI
	Summary of RTS

