
1

Charj: Compiler Supported Language with an
Adaptive Runtime

Laxmikant (Sanjay) Kale,
http://charm.cs.illinois.edu

Based on Aaron Becker’s thesis work

2

Thesis

Simple compiler support and basic static analysis can, when
paired with a sophisticated and feature-rich runtime system,
significantly improve productivity.

3

Approach

• Combine compiler technology with a rich runtime system to increase
productivity without harming performance

• Better safety checks by incorporating programming model
semantic knowledge into compiler

• Static analysis allows more enforcement and can provide
optimizations that are impossible at the library level

• Tightly integrate with multiple programming models

• Add language-level support for rich runtime features

Where can I find a rich adaptive RTS?

4

5

The Charj Language

6

Compiler Infrastructure

• Multi-pass compiler written in Java, uses ANTLR compiler
construction tool

• Simple operations use ANTLR’s AST recognition and rewriting
features

• More complex operations operate directly on the AST and construct
an explicit CFG

• Supports inter-procedural data-flow analysis

• Compiler driver takes .cj input, produces C++ and .ci files, and
translates and compiles the output source

7

Problems with Charm

• Most of your code is only seen by a C++ compiler

• No way to do lots of simple things, especially:

• Enforce Charm semantics

• Do compile-time analysis and optimization

• Moving model-specific features into the interface file works, but it’s
difficult and inflexible.

8

Charj Design Principles

• Keep it simple

• Minimize new syntax

• Distinguish between local and remote operations

• Integrate tightly with the runtime

9

Productivity Benefits

• Enforcement of programming model semantics by the compiler (e.g.
assignment of readonly variables)

• Elimination of redundant program information

• Improved messages for Charm-specific syntax errors

• Clear syntactic distinction between remote and local operations

• Optimizations can be done by compiler instead of by hand

10

Example: Readonly Variables

int n; // readonly variable
...
n = 17; // Ok if we’re in a
 // mainchare constructor.
 // Silent bug otherwise.

11

Example: Readonly Variables

readonly int n;
...
n = 17; // Compiler will notify
 // the programmer of
 // illegal assignments

In Charj:

12

Example: Custom Reducers

CkReductionMsg* _my_reducer(
 int nMsg, CkReductionMsg** msgs)
{
 MyType* accum = new MyType();
 for (int i=0; i<nMsg; ++i) {
 MyType* x;
 PUP::fromMem p(msgs[i]->getData());
 p | *x;
 accum->reduce(x);
 }
 return CkReductionMsg::buildNew(...);
}

13

Example: Custom Reducers

// .ci
initcall void _register_my_reducer(void);

// .cc
CkReduction::reducerType _my_reducer_type;
void _register_my_reducer(void)
{
 _my_reducer_type =
 CkReduction::addReducer(_my_reducer);
}

14

Example: Custom Reducers in Charj

reducer<MyType> my_reducer {
 my_reducer() { accum = new MyType(); }
 reduce(MyType x) { accum.reduce(x); }
}

15

Embedded Programming Models

16

Structured Dagger

• Coordination mini-language implemented on the Charm runtime

• Implemented as library + translator, functions containing SDAG are
put into Charm interface files, translator emits C++

• Allows the programmer to express the parallel structure of an
object’s lifetime without the need for threading or blocking
constructs

• Allows clear, concise, efficient code

Stencil code with sdag

17

entry void stencil()
{
 for (int i=0; i<N; ++i) {
 sendStrips();
 overlap {
 when getStripFromLeft(Strip s) {
 processStripFromLeft(s);
 }
 when getStripFromRight(Strip s) {
 processStripFromRight(s);
 }
 }
 doStencil();
 }
}

Stencil: Message Driven Equivalent

18

entry void stencil()
{
 i = 0;
 mainLoop();
}

void mainLoop()
{
 leftStripReceived = false;
 rightStripReceived = false;
 if (i < N) {
 sendStrips();
 }
}

entry void getStripFromLeft(Strip s)
{
 processStripFromLeft(s);
 leftStripReceived = true;
 checkOverlapCompletion();
}

entry void getStripFromRight(Strip s)
{
 processStripFromRight(s);
 rightStripReceived = true;
 checkOverlapCompletion();
}

void checkOverlapCompletion()
{
 if (leftStripReceived && rightStripReceived)
{
 doStencil();
 ++i;
 mainLoop();
 }
}

19

Improvements in Charj SDAG

• Local variables

• Free mixing of sequential constructs and SDAG constructs (no
“atomic” blocks)

• No redundant declarations for “when” triggers

• No need for macro insertion or initialization calls during construction
and migration

20

Multiphase Shared Arrays

• Disciplined access to arrays in a partitioned global address space

• Arrays go through phases, with synchronization between

• In each phase, only a subset of accesses are legal (e.g. read-only,
write-only, accumulate)

A
B

C C C C

21

MSA: Original Implementation

// MSA array A in write mode
for (int i=0; i<N; ++i)
 A[random()]++;

A.sync(); // transition to read mode

for (int i=0; i<N; ++i)
 printf(“%d ”, A[i];

22

MSA: Typed Handles

// MSA array A in write mode
MSA::Write whandle = A.getInitialWrite();
for (int i=0; i<N; ++i)
 whandle(random())++;

MSA::Read rhandle = whandle.syncToRead();

for (int i=0; i<N; ++i)
 printf(“%d ”, rhandle(i));

23

MSA: Charj Implementation

// MSA array A in accumulate mode
for (int i=0; i<N; ++i)
 A[random()]++;

A.syncToRead();

for (int i=0; i<N; ++i)
 printf(“%d ”, A[i]);

24

Accelerated Entry Methods

• Access to different types of accelerator hardware using a unified
programming model and syntax

• Programmer creates special accelerated entry methods using a
variant of normal entry method syntax

• Entry method is split into two pieces: body (can execute on host or
on accelerator) and callback (host only)

• Runtime system can execute them on either the host processor or
on accelerator hardware

25

Accelerated Entry Methods

entry [accel] void X(int n)
[readWrite : float A <impl_obj->A>,
 readOnly : float B <impl_obj->B>]
{
 // ...
} x_callback;

26

Accelerated Entry Methods

entry [accel] void X(int n)
[readWrite : float A <impl_obj->A>,
 readOnly : float B <impl_obj->B>]
{
 // ...
} x_callback;

27

Accelerated Entry Methods

accelerated entry void X(int n) {
 // ...
} x_callback;

28

Optimizations

29

Packing and Unpacking

How do we communicate data
structures in a parallel application?

30

MSA Strip Mining

• MSAs are split into pages, and MSA accesses go through a local
page cache

• Generic array accesses must first check to see if the desired
element is locally available, and if not, fetch it

• Prefetching and raw array accesses are faster, but more work for
the programmer

31

MSA Strip Mining

for (int i=0; i<N; ++i)
 x = f(A[i]);

32

MSA Strip Mining

fetchPage(A, 0);
for (int i=0; i<N/PAGE; ++i) {
 if (i+1 < N/PAGE)
 fetchPage(A, i+1);
 waitForPage(A, i);
 for (int j=i*PAGE; j<(i+1)*PAGE; ++j)
 x = f(A.rawAccess(j));
}

33

Charj Application Suite

• LU Decomposition

• LeanMD (Molecular Dynamics)

• Barnes-Hut

• Jacobi Relaxation

34

Charj Application Suite

Charm Charj % Reduction
LU 187 135 28%

LeanMD 941 683 27%
Barnes-Hut 5174 3808 26%

Jacobi 327 163 50%

Source Lines of Code

35

Contributions

• Demonstration of the thesis via the development of Charj programs
that are simpler than their Charm equivalents

• A language targeting the Charm runtime system that supports
multiple embedded programming models.

• A compiler for that language, supporting semantic checks and
optimizations specific to Charj.

• Embeddings of multiple DSLs based on the Charm runtime into
Charj

• A collection of Charj implementations of existing applications, which
demonstrate the features of Charj.

36

Summary

• By combining compiler techniques with a rich runtime system, we
can improve programmer productivity without sacrificing
performance

• Improved syntax and semantic checks

• Better integration of multiple programming models

• Optimizations powered by static analysis

More Info: http://charm.cs.illinois.edu/

Migratable objects programming model

• Names for this model:

• Overdecompostion approach

• Object-based overdecomposition

• Processor virtualization

• Migratable-objects programming model

8/27/2012 LBNL/LLNL 37

Object Based Over-decomposition: Charm++

8/27/2012 LBNL/LLNL 38

User View

System implementation

• Multiple “indexed collections” of C++ objects
• Indices can be multi-dimensional and/or sparse

• Programmer expresses communication between objects
– with no reference to processors

Adaptive Runtime Systems
• Decomposing program into a large number of WUDUs empowers the

RTS, which can:

• Migrate WUDUs at will

• Schedule DEBS at will

• Instrument computation and communication at the level of these logical
units

• WUDU x communicates y bytes to WUDU z every iteration

• SEB A has a high cache miss ratio

• Maintain historical data to track changes in application behavior

• Historical => previous iterations

• E.g., to trigger load balancing

 8/27/2012 LBNL/LLNL 39

Over-decomposition and
message-driven execution

Migratability

Introspective and adaptive
runtime system

Scalable Tools
Automatic overlap, pefetch,

compositionality
Emulation for Perf

Prediction

Fault Tolerance

Dynamic load balancing (topology-
aware, scalable)

Temperature/power considerations

8/27/2012 LBNL/LLNL 40

Message-driven execution model
• Adaptive overlap of communication and computation

• A strong principle of prediction for data and code use

• Much stronger than principle of locality

• Can use to scale memory wall:

• Prefetching of needed data:

• into scratch pad memories, for example

8/27/2012 LBNL/LLNL 41

Scheduler Scheduler
Message Q Message Q

Impact on communication

• Current use of communication network:

• Compute-communicate cycles in typical MPI apps

• So, the network is used for a fraction of time,

• and is on the critical path

• So, current communication networks are over-engineered for by
necessity

• With overdecomposition

• Communication is spread over an iteration

8/27/2012 LBNL/LLNL 42

Compositionality
• It is important to support parallel composition

• For multi-module, multi-physics, multi-paradigm applications…

• What I mean by parallel composition

• B || C where B, C are independently developed modules

• B is parallel module by itself, and so is C

• Programmers who wrote B were unaware of C

• No dependency between B and C

• This is not supported well by MPI

• Developers support it by breaking abstraction boundaries

• E.g., wildcard recvs in module A to process messages for module B

• Nor by OpenMP implementations:
8/27/2012 LBNL/LLNL 43

8/27/2012 LBNL/LLNL 44

Without message-driven execution (and
virtualization), you get either:

Space-division

Time

B

C

8/27/2012 LBNL/LLNL 45

OR: Sequentialization

Time

B

C

8/27/2012 LBNL/LLNL 46

Parallel Composition: A1; (B || C);
A2

Recall: Different modules, written in different
languages/paradigms, can overlap in time and on
processors, without programmer having to worry

about this explicitly

Decomposition Independent of numCores
• Rocket simulation example under traditional MPI

• With migratable-objects:

8/27/2012 LBNL/LLNL

Solid

Fluid

Solid

Fluid

Solid

Fluid
. . .

1 2 P

Solid1

Fluid1

Solid2

Fluid2

Solidn

Fluidm . . .
Solid3 . . .

47

Charm++ and CSE Applications

8/27/2012 LBNL/LLNL 48

Enabling CS technology of parallel objects and intelligent runtime
systems has led to several CSE collaborative applications

Synergy

Well-known Biophysics
molecular simulations App

Gordon Bell Award, 2002

Computational
Astronomy

Nano-Materials..

ISAM

CharmSimdemi
cs

Stochastic
Optimization

Object Based Over-decomposition: AMPI
• Each MPI process is implemented as a user-level thread

• Threads are light-weight and migratable!
• <1 microsecond context switch time, potentially >100k threads per core

• Each thread is embedded in a charm++ object (chare)

LBNL/LLNL

Real
Processors

MPI
processe

s

Virtual
Processo
rs (user-

level
migratabl

e
threads)

8/27/2012
49

A quick Example:
Weather Forecasting in BRAMS

• Brams: Brazillian weather code (based on RAMS)

• AMPI version (Eduardo Rodrigues, with Mendes and J. Panetta)

8/27/2012 LBNL/LLNL 50

8/27/2012 LBNL/LLNL 51

8/27/2012 LBNL/LLNL 52

Baseline: 64 objects on 64 processors

8/27/2012 LBNL/LLNL 53

Over-decomposition: 1024 objects on 64
processors:

Benefits from communication/computation
overlap

8/27/2012 LBNL/LLNL 54

With Load Balancing:
1024 objects on 64 processors

No overdecomp (64 threads) 4988 sec
Overdecomp into 1024 threads 3713 sec
Load balancing (1024 threads) 3367 sec

SMP Performance on Titan(Dev)

55

9 ms/step Number of cores

Ti
m

es
te

p
(m

s/
st

ep
)

13ms/
step

8/27/2012 LBNL/LLNL

Saving Cooling Energy
• Easy: increase A/C setting

• But: some cores may get too hot

• Reduce frequency if temperature is high

• Independently for each core or chip

• This creates a load imbalance!

• Migrate objects away from the slowed-down processors

• Balance load using an existing strategy

• Strategies take speed of processors into account

• Recently implemented in experimental version

• SC 2011 paper

• Several new power/energy-related strategies

8/27/2012 LBNL/LLNL 56

Fault Tolerance in Charm++/AMPI

• Four Approaches:

• Disk-based checkpoint/restart

• In-memory double checkpoint/restart

• Proactive object migration

• Message-logging: scalable fault tolerance

• Common Features:

• Leverages object-migration capabilities

• Based on dynamic runtime capabilities

8/27/2012 LBNL/LLNL 57

In-memory double checkpointing

• Is practical for many apps

• Relatively small footprint at checkpoint time

• Also, you can use non-volatile node-local storage (e.g. FLASH)

8/27/2012 LBNL/LLNL 58

8/27/2012 LBNL/LLNL 59

Checkpoint time is low: 4 milliseconds
for MD,

 essentially, live-data-permutation
for any app

8/27/2012 LBNL/LLNL 60

Restart time is low: 150 milliseconds on 64K
cores,

 detection time, and re-execution times
not included

HPC Challenge Competition

• Conducted at Supercomputing

• 2 parts:

• Class I: machine performance

• Class II: programming model productivity

• Has been typically split in two sub-awards

• We implemented in Charm++

• LU decomposition

• RandomAccess

• LeanMD

• Barnes-Hut

• Main competitors this year:

8/27/2012 LBNL/LLNL 61

Strong Scaling on Hopper for LeanMD

8/27/2012 LBNL/LLNL 62

Gemini Interconnect, much
less noisy

CharmLU: productivity and performance

• 1650 lines of source

• 67% of peak on Jaguar

8/27/2012 LBNL/LLNL 63

Barnes-Hut

8/27/2012 LBNL/LLNL 64

High Density Variation with a Plummer
distribution of particles

Charm++ interoperates with MPI

Charm++
Control

8/27/2012 LBNL/LLNL 65

Summary of RTS

• Charm++ is a sophisticated programming “language”,

• It is supported by a rich adaptive runtime system, which supports:

• Adaptive overlap of communication/computation

• Parallel composition

• Dynamic load balancing

• Fault tolerance

• Is a production-quality system used by many apps in routine use by CSE
scientists

• Good candidate to verify our thesis

8/27/2012 LBNL/LLNL 66

	Charj: Compiler Supported Language with an Adaptive Runtime�
	Thesis
	Approach
	Slide Number 4
	The Charj Language
	Compiler Infrastructure
	Problems with Charm
	Charj Design Principles
	Productivity Benefits
	Example: Readonly Variables
	Example: Readonly Variables
	Example: Custom Reducers
	Example: Custom Reducers
	Example: Custom Reducers in Charj
	Embedded Programming Models
	Structured Dagger
	Stencil code with sdag
	Stencil: Message Driven Equivalent
	Improvements in Charj SDAG
	Multiphase Shared Arrays
	MSA: Original Implementation
	MSA: Typed Handles
	MSA: Charj Implementation
	Accelerated Entry Methods
	Accelerated Entry Methods
	Accelerated Entry Methods
	Accelerated Entry Methods
	Optimizations
	Packing and Unpacking
	MSA Strip Mining
	MSA Strip Mining
	MSA Strip Mining
	Charj Application Suite
	Charj Application Suite
	Contributions
	Summary
	Migratable objects programming model
	Object Based Over-decomposition: Charm++
	Adaptive Runtime Systems
	Slide Number 40
	Message-driven execution model
	Impact on communication
	Compositionality
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Decomposition Independent of numCores
	Charm++ and CSE Applications
	Object Based Over-decomposition: AMPI
	A quick Example: �Weather Forecasting in BRAMS
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	SMP Performance on Titan(Dev)
	Saving Cooling Energy
	Fault Tolerance in Charm++/AMPI
	In-memory double checkpointing
	Slide Number 59
	Slide Number 60
	HPC Challenge Competition
	Strong Scaling on Hopper for LeanMD
	CharmLU: productivity and performance
	Barnes-Hut
	Charm++ interoperates with MPI
	Summary of RTS

