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QMC advantages: accuracy and scalability 
•  Applicable to a wide range of problems 

•  Any boundary conditions: molecular and solid-state systems 
•  Dimensionality: 1D, 2D, and 3D 
•  Representation: atomistic to model Hamiltonians 

•  Scale with a few powers in system size: O(N3)-O(N4) 
•  Routine calculations of 100s-1000s electrons  

•  Ample opportunities of parallelism 
 

QMC has enabled accurate, many-body predictions of 
electronic structures of atoms, molecules to solids; molecular 
solids to highly correlated metals 



Basics of QMC for ES 
For N-electron system 

Many-body  
Hamiltonian 

Many-body trial wavefunction 

QMC 



Efficiency of QMC 
•  QMC employs sampling to obtain 

 
 
with an error bar 

 
 

•  Efficiency of QMC simulations is high, when 
-  Variance is small: 

-          , the rate of MC sample generation is high 

(zero-variance) 

variance 

Physical insights & improved optimization 

Parallelism,  compact form of       & optimized kernels 
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Accelerating QMC 

•  Better  
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Accelerating QMC 

•  Better  
 

Basis sets: molecular orbitals,  
plane-wave, grid-based orbitals … 
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Accelerating QMC 

•  Better  
 
•  Improved algorithms  
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Accelerating QMC 

•  Better  
 
•  Improved algorithms  

•  Faster computers 

•  Bigger computers 

 T

Increase the QMC efficiency 
Minimize time-to-solution 
(wall-clock time) to reach a 
target error bar  
 
           More science 



State-of-art QMC 
•  Fast algorithm for multi-determinant evaluation 
•  Improved optimization of trial many-body wavefunctions 
•  QMCPACK: efficient and scalable QMC for large clusters of 

multi-core and GPUs 

More Science, High Fidelity 
MAE of atomization energies* 

55 of G1 set 
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*Morales & Kim, JTCP 2012 

Li-ion diffusion in 
graphitic battery anodes	  



DMC: computational view 

•  Computationally Intensive: Quantum Force, Ratio, Local Energy 
•  Communication light 
•  Ample parallel opportunities : configurations, k-point, walkers 

 

Population (walkers) 

Collect	  &	  load	  balance	  

Branch with the weight 
X 

“Quantum Force” 

Random	  Make a  move 

Accept/reject a  move 



MPI+X Model for QMC 
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 B-spline table 

MPI Task 
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MPI Group 

Each group 

X on SMP 
OpenMP, CUDA, 
Threads ….  



Parallel Performance 
•  DMC scaling is almost perfect , > 90% efficiency 

•  Limited by collectives for 
•  1 MPI to 1 GPU or NUMA mapping 

•  Gain in Collectives  
•  Large average number of walkers per MPI task, thus small 

fluctuations : easy to balance walkers per node 
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• (MPI x OpenMP) for the reference Compute Unit 
• Keeneland@NICS, Fermi (3 cards per node) 
• Strong scaling on CPUs; weak scaling on GPUs 

< 1 walker swap 
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(MPI+X)/C++ has worked (so far) 
•  Simple but effective for QMC 
•  Productive solution for developers (physicists) 

–  Abstraction for physics concepts, methods and algorithms 
–  Extensible and efficient 

•  Object-oriented and generic programming 
–  Allow separation of science from coding 
–  Lazy implementations and optimizations 

•  Efficient memory and thread management 
–  Oversubscription on Intel & IBM BGQ increases performance 

•  Portable and scalable from a laptop to HPC 
•  Optimal use of current multi/many-core SMP architectures 
•  Exploit steady improvement of HPC ecosystem 

–  Compilers, open standards, systems, numerical libraries, I/O 

 



Managing Complexity 
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•  Multiple forms 
•  Multiple precisions 
•  Nested parallelism 
•  Scaling with N & M 

Single-particle orbitals 
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QMC on Exascale 

General plans 
•  Probably (MPI*+X)/C++ will work 

–  Clusters of powerful nodes 
–  Each node has ample memory and a lot of concurrency 

•  What is X on node: options abound 
•  Doing a lot better within X 

–  Most of the speedup will come from vector units 
–  Intrinsic specialization: e.g.,SSE, AVX and QPX in numerical library 
–  Need and extend specialized containers and operators on target 

architectures 

Better QMC simulations with more resources 
•  Increase fidelity of QMC simulations: better  
•  Beyond ground-state simulations: excited states, finite temperatures 
•  Multi-code execution: MC with QMC 
•  Increase complexity and cost per sample: constant time-to-solution 



For Productivity 
•  Multiple solutions that can be composed and replaced 

•  Too hard for a single programming model to deal with 
complexity and to support diverse use cases 

•  Ecosystem improvement : compilers, libraries, tools and well-
trained/trainable programmers 

•  Division of labor 
•  Applications manage data and abstractions 
•  Performance enhancement by professionals 

•  Smart allocators, iterators, auto code generation 
•  Optimized execution for each run 

•  Input is “compiled” for a problem size, representations, 
solutions and execution tree 

•  Profiling and auto tuning 



Conclusions 
•  QMC has kept up with the HPC evolution and will continue 

improving predictive powers in physics, materials and 
chemistry 

ü Clusters of multi- and many-core SMP 

ü Clusters of GPU 

    Clusters of hybrid 

     What is next 

•  (MPI+X)/C++ for now 
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