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Equation of motion coupled-cluster (EOMCC) 
formalism 

Short review of methodologies 
Parallel performance 

Multi-reference CC  (MRCC) theories 
Short review of state-selective methods 
Challenges 
New implementations: reference level parallelism 
Applications 

 
 



What we want to solve 
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 Quantum Chemistry Nuclear Physics Solid State Physics 

Many Particle Systems 



Exact solution of Schrödinger equation 
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Weyl formula (dimensionality of full configuration 
interaction space) – exact  solution of Schrödinger 
equation 
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n – total number of orbitals  
 

N – total number of correlated electrons 
 

S – spin of a given electronic state 

A simple example: C2 molecule;   N=12, n=100 
f(n,N,S)∼1017 
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Equation-of-motion coupled cluster 
approach 

Method Numerical  
complexity 

Applications 

EOMCCSD 
(singles & doubles) 

N6 Excitation energies of singly excited 
states 

CR-EOMCCSD(T) 
(perturbative triples) 

N7 

 
Excitation energies & potential 
energy  surfaces of more 
“complicated” states 

EOMCCSDT 
(singles & doubles & triples) 

N8 

 
As CR-EOMCCSD(T) but more 
accurately 

Coester, Kummel, Cizek,Paldus,Bartlett,… 

Bartlett, Stanton, … 



Tensor Contraction Engine (TCE) 
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Symbolic algebra systems  for 
coding  complicated tensor 
expressions: Tensor Contraction 
Engine (TCE) 
Parallel tools needed: Global 
Arrays (GA) 
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Scalability of the 
triples part of the 
CR- EOMCCSD(T) 
approach for the 
FBP-f-coronene 
system in the AVTZ 
basis set. Timings 
were determined 
from calculations 
on the Jaguar Cray 
XT5computer 
system at NCCS. 

Scalability of the non-iterative EOMCC  
codes (A.D. 2011) 

K. Kowalski. S. Krishnamoorthy, R.M. Olson, V. Tipparaju, 
E. Apra, Supercomputing 2011 



Functionalization of the porphyrines 
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K. Kowalski, S. Krishnamoorthy, O. Villa, J.R. Hammond, N. Govind, J. Chem. Phys. (2010);   
K. Kowalski, R.M. Olson, S. Krishnamoorthy, V. Tipparaju, E. Apra, J. Chem. Theory Comput. (2011)) 

A comparison of calculated and 
experimental data shows that in 
order to describe singly excited 
states in large systems, triple 
excitations are needed   



Science impact: synergy between 
experiment, theory, and HPC 
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MRCC theory: new approaches and 
implementations 

10 

Rh(PPh3)2Cl, F. Maseras, A. Lledos, 
Catalysis by Metal Complexes, 2002, 

25, pp. 6  
W. Liu, B. Shen, Antimicrob Agents  

Chemother. 2000, 44: 382–392. 

B. Lasorne, G.A. Worth, M.A. Robb, 
Comp. Mol. Sci. 2011, 1, 460-475. 

M.B. Smith, J. Michl, Chem. Rev. 110, 
6891 (2010). 
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MRCC theory in a nutshell 

Φ { }M
lsM

 

1 0    
=

Φ=
µµ

Reference function Model space 

Schematic representation of the complete model space corresponding to two 
active electrons distributed over two active orbitals (red lines). Only determinants  
with MS=0are included in the model space. 
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MRCC theory in a nutshell 
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State-Universal 
MRCC methods 

Energies for 
M states  

Bloch 

Equation  

State-Specific 
MRCC methods 

Target one state at 
time (less prone to 

intruder states) 

Sufficiency conditions: BW-
MRCC, Mk-MRCC, … 

EccH eff =



Towards parallel MRCC – blazing the trail 

Problems with load 
balancing caused by 
active-orbital logic 
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Processor groups (PGs) and reference 
level parallelism 
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The reference level 
parallelism can be 
applied in: 

Solving coupled 
reference-dependent 
MRCC iterative 
equations 
Build efficient parallel 
schemes for non-
iterative MRCC 
methods 
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Processor groups (PGs) and reference 
level parallelism 

Scalability of the BW-
MRCCSD methods   for β-
carotene in 6-31G basis 
set (∼470 basis set 
functions); (4,4) complete 
model space model 
space (20 reference 
functions) was used 
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Processor groups and reference level 
parallelism 



When triple excitations are needed: 
MRCCSD(T) 
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K. Bhaskaran-Nair, J. Brabec, J. Pittner, H.J.J. van Dam, E. Apra, K. Kowalski, 
JCP (accepted). 

Numerical complexity  ∼ M × N7  
 
Scalability   ∼ M × (scalability of the 
                        CCSD(T) approach) 
 

Improve the quality of the 
MRCCSD approaches 
Counteract the intruder-state 
problem 

GPU implementations of the MRCCSD(T) 
approaches are currently tested  
 



Recent MRCC applications 
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The MRCC capabilities 
can be applied to real 
science cases 

Bond breaking 
Open-shell singlet states in 
organic magnetic 
materials 
Low-high spin splittings 
Excited states: singlet 
fission (multielectron 
excitations)  
 

J. Brabec, K. Bhaskaran Nair, K. Kowalski, J. Pittner, H.J.J. van 
Dam, Chem. Phys. Lett. DOI:10.1016/j.cplett.2012.05.064 (in 
press) 



MRCC methods for core-level 
spectroscopies 

Core-level excited states: 
How to correlate both ground- 
and core-level states 
MRCC offers a possibility of 
balanced description of  
correlation effects by proper 
choice of the model space: 
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core level 

valence levels 
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System/Excitation Basis set MR-BWCCSD Expt. Error 

H2O: O(1s) → (σ∗ a1) cc-pVTZ 534.3 534.0 0.3 

H2O: O(1s) → (σ∗ b1) 
 

cc-pVTZ 536.2 535.9 0.3 

CO: O(1s) → (π∗ b1) cc-pVTZ 534.2 534.2 0.0 

CO: C(1s) → (π∗ b1) 
 

cc-pVTZ 287.3 287.4 -0.1 

SiH4: Si(1s) → (σ∗) cc-pVTZ 1846.1 1842.5 3.6 

)()( 000 cMgMM ∪=



Planned CC developments 
Development of new programming models for the CC theories: 
New TCE is needed to properly address algorithmic challenges 
posed by new generation of first-principle methods 

Heterogeneous computer architectures 
Very large model spaces in the MRCC methods 
Calculation of analytical gradients for high-level EOMCC 
approaches 

Going across spatial scales: using currently existing CC as 
drivers for integrated approaches 

Local coupled cluster methods (adaptive formulations) 
Dynamic Mean Field Theories for material science 

Building the synergy between theory, high-performance 
computing, and experiment 

Highly-accurate excited state simulations: dynamical 
processes involving valence excited states, core-level 
spectroscopy  
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THANK YOU  
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