
TASCEL: Concrete Ingredients
for Flexible Programming
Abstractions
Sriram Krishnamoorthy

Productive Programming Models for Exascale
August 2012

Portland, OR

1

Programming Model Challenges

Architectural variability

Application execution variability

Algorithmic variability

Application programmer variability

2

The Objective

Sustainable abstractions
Maintainable over the next decade(s)

Accessible to domain experts
Encode today’s and tomorrow’s algorithms

Flexible and optimizable
Handle real application scenarios
Enough information for compile-time/runtime optimization

3

“Premature optimization is the root of all evil.”
 -- Donald Knuth

Our Solution: Dynamic Parallelism

CAF 2.0
Chapel
Charm++
Cilk
CnC
Habenaro
ParalleX
UPC extensions
X10
…

4

Non-SPMD solutions

User expresses concurrency

Automatic management of:
Load balance, memory,
communication, locality

Need algorithmic solutions for:
Scalability
Resilience
Power/energy management

TASCEL: Task Scheduling Library

Express computation as collection of tasks
Tasks operate on data in global address space

TASCEL runtime system manages task execution

Agnostic of specific programming model

Focus: exploiting application/algorithm properties to
address exascale challenges

Influence prog. model design

5

Meeting Exascale Challenges

Concurrency
Persistence based load balancing and work stealing

Resilience

Resilient work stealing

6

Concurrency

Dynamic load balancing on 100K
processor cores and beyond

7

Iterative Overdecomposed Applications

Applications repeatedly executing the same computation

Static or slowly evolving execution characteristics

Execution characteristics preclude static balancing

Application characteristics (comm. pattern, sparsity,…)
Execution environment (topology, asymmetry, …)

Challenge: Load-balancing iterative applications

Problem Statement

We consider two alternatives:
Persistence-based load balancing
Work stealing

How do these algorithms behave at scale?

How do they compare?

Load Balancing Schemes [Lifflander, Krishnamoorthy,
Kale, HPDC’12]

Greedy localized hierarchical persistence-based load
balancing

Retentive distributed memory work stealing

No data movement (comm. or copy) under lock
Enable multiple ongoing steals

10

Hopper: Performance

Persistence-based load balancing “converges” faster
Retentive stealing also improves efficiency
Stealing effective even with limited parallelism

Persistence-based load balancing Retentive Stealing

E
ffi

ci
en

cy

 Core count Core count

Avg. tasks per core

Intrepid: Performance

Much worse performance for the first iteration
Converges to a better efficiency than on Hopper

Persistence-based load balancing Retentive Stealing

E
ffi

ci
en

cy

 Core count Core count

Avg. tasks per core

Titan: Performance

Similar behavior as on Intrepid

Persistence-based load balancing Retentive Stealing

E
ffi

ci
en

cy

 Core count Core count

Avg. tasks per core

Intrepid: Num. Steals

Retentive stealing stabilizes stealing costs
Similar trends on all systems

 Core count Core count

N
um

. s
te

al
s

 Attempted steals Successful steals

Resilience

Resilient Work Stealing

15

Beyond Checkpoint-Restart

Collective synchronizations are expensive
Load imbalances, local recovery, local power steering

Quiescence is expensive

Application writers may not be able to easily (efficiently)
determine synchronization points

16

+
Work stealing scheduler

+
Updates to global data

+
Fail-stop failures

Concurrent task collection

Resilient Work Stealing: How do we
support? [Ma, Krishnamoorthy ICS’12]

17

Fault Model

A fault results in permanent loss of
Data on the failed nodes
Workers on the failed nodes

Fault detection oracle
At least one live worker notified of fault

18

Resilient Task Parallel Execution: How to

identify the tasks to re-execute to recover the lost data?

find and recover partial data updates?

correctly identify tasks enqueued on failed workers?

efficiently recover from faults?

minimize overheads during normal non-fault execution?

19

Idempotent Data Store

Redundant execution is a performance and not a
correctness concern

20

Task t

Data d1

Data d2

m1

m2

Task t

Data d2

m1

m2

Faults during Work Stealing

21

live worker (i) live worker (j) failed worker (k)

Recovery Schemes

Collective recovery
Lazy
Immediate

Noncollective recovery

22

Markers

Data on Pf

Counts

Ta
sk

s

Pl 5

 11
 12 Pl

 17
 18 Pf

 22
 23 Pl

2

2
0

XS

XD
NL

XF
XF

XF
NF

1
2

2
0

Pl

Pf

Noncollective Recovery

Process State Action
Executor Home DataOwner

live live live Ignored (no re-execution)
live live failed Enqueued by executor
* failed * Enqueued by mirror

failed live * Enqueued by home

24

Every task to be re-executed is eventually identified

Single-node Failure

Number of tasks re-executed decreases with scale

25

Multi-node Failure (5% nodes lost)

26

Key Features

Fault penalty proportional to resources lost

Does not require global quiescence of computation and
communication

Work stealing automatically rebalances around faults

Arbitrary number of failures

Little change to application source code

27

Summary: The Promise

Unified abstractions for performance, power, and resilience

28

The Challenge

Design of abstractions that are
Easy to program complex applications
Encapsulate enough information to transform and execute them
efficiently

Failure scenario 1: Abstractions that tie execution
decisions within the application and ossify the code

Failure scenario 2: Abstractions that cannot be translated
into optimized execution on diverse architectures

The Missing Links

Meaningful fault, power, and portable concurrency models

Understanding of the information required from the
application through high-level abstractions

Algorithms that exploit this information for effective
execution on exascale platforms

30

31

Switching Load Balancers

Compose a load balancing plan customized for an
application
Choice based on performance profiles and application
scenario
For example: Hartree-Fock

Work stealing for zero-th and first iterations
Persistence based load balancing for subsequent iterations

Core application code is unchanged

Architectural Variability

Concurrency, especially multi-threading

Memory hierarchy/heterogeneity

Fault tolerance

Power/energy consumption

33

Application Execution Variability

Strong vs weak scaling

Fixed point vs dynamics

Stand-alone or in context of another calculation

Strongly-coupled vs ensemble/weakly-coupled

34

Algorithmic variability

New coupling of existing components
Eg., direct vs iterative solutions

Reformulation of existing algorithms

Eg., factorized representation of a specific input operator

New algorithms

Eg., low-order methods with increased sparsity

35

Application Programmer Variability

Not all application programmers work at the same level of
abstraction

Black-box/power users

Developers of calculations/methods

Infrastructure/runtime developers

36

Computational Model

Task inputs and outputs via global data structures

Communication via active messages

Common knowledge of total ordering of tasks
Each task has a globally know identifier

37

	TASCEL: Concrete Ingredients for Flexible Programming Abstractions
	Programming Model Challenges
	The Objective
	Our Solution: Dynamic Parallelism
	TASCEL: Task Scheduling Library
	Meeting Exascale Challenges
	Concurrency
	Iterative Overdecomposed Applications
	Problem Statement
	Load Balancing Schemes [Lifflander, Krishnamoorthy, Kale, HPDC’12]
	Hopper: Performance
	Intrepid: Performance
	Titan: Performance
	Intrepid: Num. Steals
	Resilience
	Beyond Checkpoint-Restart
	Resilient Work Stealing: How do we support? [Ma, Krishnamoorthy ICS’12]�
	Fault Model
	Resilient Task Parallel Execution: How to
	Idempotent Data Store
	Faults during Work Stealing
	Recovery Schemes
	Collective Recovery
	Noncollective Recovery
	Single-node Failure
	Multi-node Failure (5% nodes lost)
	Key Features
	Summary: The Promise
	The Challenge
	The Missing Links
	Slide Number 31
	Switching Load Balancers
	Architectural Variability
	Application Execution Variability
	Algorithmic variability
	Application Programmer Variability
	Computational Model

