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Programming Model Challenges 

Architectural variability 
 
Application execution variability 
 
Algorithmic variability 
 
Application programmer variability 
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The Objective 

Sustainable abstractions 
Maintainable over the next decade(s) 
 

Accessible to domain experts 
Encode today’s and tomorrow’s algorithms 
 

Flexible and optimizable 
Handle real application scenarios 
Enough information for compile-time/runtime optimization 
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“Premature optimization is the root of all evil.” 
                              -- Donald Knuth 



Our Solution: Dynamic Parallelism 

CAF 2.0 
Chapel 
Charm++ 
Cilk 
CnC 
Habenaro 
ParalleX 
UPC extensions 
X10 
… 
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Non-SPMD solutions 
 

User expresses concurrency 
 

Automatic management of: 
Load balance, memory, 
communication, locality 
 

Need algorithmic solutions for: 
Scalability  
Resilience 
Power/energy management 

 



TASCEL: Task Scheduling Library 

Express computation as collection of tasks 
Tasks operate on data in global address space 

 
TASCEL runtime system manages task execution 
 
Agnostic of specific programming model 
 
Focus: exploiting application/algorithm properties to 
address exascale challenges 
 
Influence prog. model design 
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Meeting Exascale Challenges 

Concurrency 
Persistence based load balancing and work stealing 

 
Resilience 

Resilient work stealing 
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Concurrency 

Dynamic load balancing on 100K 
processor cores and beyond    
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Iterative Overdecomposed Applications 

Applications repeatedly executing the same computation 
 
Static or slowly evolving execution characteristics 
 
Execution characteristics preclude static balancing 

Application characteristics (comm. pattern, sparsity,…) 
Execution environment (topology, asymmetry, …) 

 
Challenge: Load-balancing iterative applications 



Problem Statement 

We consider two alternatives: 
Persistence-based load balancing 
Work stealing 
 

How do these algorithms behave at scale? 
 
How do they compare? 



Load Balancing Schemes [Lifflander, Krishnamoorthy, 
Kale, HPDC’12] 

Greedy localized hierarchical persistence-based load 
balancing 
 
Retentive distributed memory work stealing 

No data movement (comm. or copy) under lock 
Enable multiple ongoing steals 
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Hopper: Performance 

Persistence-based load balancing “converges” faster 
Retentive stealing also improves efficiency 
Stealing effective even with limited parallelism 

Persistence-based load balancing               Retentive Stealing 
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Intrepid: Performance 

Much worse performance for the first iteration 
Converges to a better efficiency than on Hopper 

Persistence-based load balancing                  Retentive Stealing 
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Titan: Performance 

Similar behavior as on Intrepid 

Persistence-based load balancing                Retentive Stealing 

E
ffi

ci
en

cy
 

                 Core count                                           Core count 

Avg. tasks per core 



Intrepid: Num. Steals 

Retentive stealing stabilizes stealing costs 
Similar trends on all systems 
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Resilience 

Resilient Work Stealing 
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Beyond Checkpoint-Restart 

Collective synchronizations are expensive 
Load imbalances, local recovery, local power steering 

 
Quiescence is expensive 
 
Application writers may not be able to easily (efficiently) 
determine synchronization points 
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+ 
Work stealing scheduler 

+ 
Updates to global data 

+ 
Fail-stop failures 

Concurrent task collection 

Resilient Work Stealing: How do we 
support? [Ma, Krishnamoorthy ICS’12] 
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Fault Model 

A fault results in permanent loss of 
Data on the failed nodes 
Workers on the failed nodes 
 

Fault detection oracle 
At least one live worker notified of fault 
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Resilient Task Parallel Execution: How to 

identify the tasks to re-execute to recover the lost data? 
 
find and recover partial data updates? 
 
correctly identify tasks enqueued on failed workers? 
 
efficiently recover from faults? 
 
minimize overheads during normal non-fault execution? 
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Idempotent Data Store 

Redundant execution is a performance and not a 
correctness concern 
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Faults during Work Stealing 
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live worker (i) live worker (j) failed worker (k) 



Recovery Schemes 

Collective recovery 
Lazy 
Immediate 

 
Noncollective recovery 
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Noncollective Recovery 

Process State Action 
Executor Home DataOwner 

live live live Ignored (no re-execution) 
live live failed Enqueued by executor 
* failed * Enqueued by mirror 

failed live * Enqueued by home 
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Every task to be re-executed is eventually identified 



Single-node Failure 

Number of tasks re-executed decreases with scale  
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Multi-node Failure (5% nodes lost) 
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Key Features 

Fault penalty proportional to resources lost 
 

Does not require global quiescence of computation and 
communication 

 
Work stealing automatically rebalances around faults 

 
Arbitrary number of failures 
 
Little change to application source code 
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Summary: The Promise 

Unified abstractions for performance, power, and resilience 
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The Challenge 

Design of abstractions that are 
Easy to program complex applications 
Encapsulate enough information to transform and execute them 
efficiently 

 

Failure scenario 1: Abstractions that tie execution 
decisions within the application and ossify the code 
 
Failure scenario 2: Abstractions that cannot be translated 
into optimized execution on diverse architectures 

 



The Missing Links 

Meaningful fault, power, and portable concurrency models 
 
Understanding of the information required from the 
application through high-level abstractions 
 
Algorithms that exploit this information for effective 
execution on exascale platforms 
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Switching Load Balancers 

Compose a load balancing plan customized for an 
application 
Choice based on performance profiles and application 
scenario 
For example: Hartree-Fock 

Work stealing for zero-th and first iterations 
Persistence based load balancing for subsequent iterations 

Core application code is unchanged 



Architectural Variability 

Concurrency, especially multi-threading 
 
Memory hierarchy/heterogeneity 
 
Fault tolerance 
 
Power/energy consumption 
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Application Execution Variability 

Strong vs weak scaling 
 
Fixed point vs dynamics 
 
Stand-alone or in context of another calculation 
 
Strongly-coupled vs ensemble/weakly-coupled 
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Algorithmic variability 

New coupling of existing components 
Eg., direct vs iterative solutions 

 
Reformulation of existing algorithms 

Eg., factorized representation of a specific input operator 
 
New algorithms 

Eg., low-order methods with increased sparsity 
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Application Programmer Variability 

Not all application programmers work at the same level of 
abstraction 
 
Black-box/power users 
 
Developers of calculations/methods 
 
Infrastructure/runtime developers 
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Computational Model 

Task inputs and outputs via global data structures 
 

Communication via active messages 
 

Common knowledge of total ordering of tasks 
Each task has a globally know identifier 
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