


 



Productive Programming Models for Exascale 

Portland Marriott City Center 

Portland, OR, August 14-15, 2012 

 

We are pleased to announce the workshop on productive programming models for exascale 

scientific modeling and simulation, and data analysis applications. The workshop will explore the 

state-of-the-art in-parallel programming models, and discuss the future developments and 

requirements that will allow both model and data-driven scientific applications to effectively use 

peta- to exascale computer architectures. Discussions will focus on issues related to scalability, 

fault resiliency, programmability, interoperability, performance diagnostics, power efficiency, 

hardware technology, etc. In addition, recent accomplishments of a small number of domain 

science application code development efforts will be highlighted.  

Computer scientists working on programming models for high-performance computer 

architectures, and computational scientists from several disciplines, are invited to discuss the 

technical roadmap for productive programming models as well as the future requirements of a 

variety of modeling and simulation, and large scale data analysis applications.  

Key Objectives  

 Highlight the effectiveness of high-level programming models within the computational 

and computer science communities 

 Present the research and development roadmap for library and language based 

productive programming models 

 Engage the computational sciences community to understand their current 

computational challenges and future application needs and requirements 

 Engage the computer science community to share ideas on interoperability and 

scalability of programming models for next-generation computer architectures. 
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8:30 – 12:00 SESSION 1: Programming Models Abhinav Vishnu 

8:30 – 9:00 “Exascale: your opportunity to create a decent HPC language” Brad Chamberlain 
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10:00 – 10:45 “Multi-Level Programming Paradigms for Exascale Computing” Serge Petiton 

10:45 – 11:15 “REX: REthinking the “X” in the “MPI+X” for Exascale Nodes” Yonghong Yan  

11:15 – 12:00 “TASCEL: Concrete Ingredients for Flexible Programming 
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13:30 – 16:45 SESSION 2: Applications Daniel Chavarría  

13:30 – 14:00 “Exascale Challenges for Programming Models in Fusion Energy 
Sciences” 
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Codes in Reactor Physics” 
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15:45 – 16:15 “HPC Challenges in Oil & Gas Upstream Scientific Applications” Terrence Liao 

16:15 – 16:45 “A GA Based Approach to Automated Data Management for 
Parallel Quantum Monte Carlo Applications” 
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“The Advancement or Lack of Advancement in Programming 
Models Over the Past 45 Years” 

 
John Levesque 
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SPEAKERS 
 
Poking the Soft Underbelly of Programmer Productivity on Exascale  
George Almasi, IBM Corporation 
 
I can't wait–I’m giddy at the prospect of programming an exascale machine...actually, I lie. 
Programming exascale machines is likely to be dreadful. Our suffering will have four primary 
causes: hardware architects with power-aware designs ("cache coherence is too power-
hungry"), system software people with good intentions ("I will take half your threads to 
guarantee network progress"), oddball programming models (think thread synchronization 
semantics on NVIDIA) and last but not least, the suffering we inflict on ourselves to realize every 
last bit of performance. The prospect of fragile, un-portable and unmaintainable code looms. 
Forewarned is forearmed. Let us examine–example by example–the risks we face; the sources 
of bad programmer karma and what, if anything, may be done about them. 
 
Message Passing in Hierarchical and Heterogeneous Environments: MPI-3 and Beyond 
Pavan Balaji, Argonne National Laboratory 
 
MPI is widely considered to be the de facto standard for parallel programming today. However, 
as we move to extreme-scale systems with deeply hierarchical and heterogeneous computing 
and memory subsystems, there is a lot of debate as to whether MPI (or "MPI+X") is still the right 
programming model for parallel computing, or if something entirely new has to be invented. In 
this talk, I will discuss a small subset of a large number of enhancements to MPI that various 
researchers are looking into, to allow it to be function efficiently on modern computing systems. 
These include enhancements being included in MPI-3 (such as one-sided communication, 
topology management, and shared-memory interoperability) as well as more long-term 
enhancements that could potentially be included in a later MPI standard (such as interoperability 
with accelerators and compiler assistance to MPI). 
 
Exascale: Your Opportunity to Create a Decent HPC Language 
Brad Chamberlain, Cray, Inc. 
 
In this talk, I'll summarize the technical challenges related to programming exascale systems 
and outline why current HPC/DOE programming models are unlikely to be satisfactory for the 
exascale era. I'll argue that while exascale brings significant challenges, it also represents an 
opportune moment for the community to consider more general parallel programming models 
that do a better job of separating hardware characteristics and implementation details from the 
expression of parallel computations. I'll describe ways in which Chapel is well-positioned for 
exascale computing and describe work that we've proposed to make it even better suited. 
During the talk, I'll also attempt to address some of the social challenges related to getting new 
programming models adopted and argue that it's important to avoid letting that inherent 
uncertainty herd us toward conservative approaches. 
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Programming & Execution Models for Exascale: Abundant Parallelism in the Presence of 
Constrained Resources 
Daniel Chavarria, Pacific Northwest National Laboratory 
 
The challenges of exascale are many: expected extremely high hardware component counts, 
power and energy constraints, reliability constraints, and an evolving hardware architecture 
picture. Programming and execution models must be prepared to address these challenges in a 
general and abstract manner that is not tied to specific architectural features. In particular, the 
expression and management of parallelism are on the critical path for programming and 
execution models at exascale. We will present our work on a set of techniques and methods 
that try to address these challenges. 
 
Programming Models Extensions for Resilience at Extreme Scale 
Pedro Diniz, University of Southern California  
 
Future high-performance computing systems will be constructed with exascale technology 
whose VLSI devices will be less reliable than those used today, and faults will become the 
norm, not the exception. This will pose significant problems for developers and users, who for 
half-a-century have enjoyed an execution model that assumed correct behavior by the 
underlying computing system. Well-known techniques for hardening systems built from 
unreliable components, such as triple modular redundancy (TMR), will be too expensive in 
energy and execution time to be used throughout an extreme scale high-performance 
computing system.  
 
Furthermore, today's most common technique for fault recovery, checkpoint/restart, will become 
prohibitively expensive as the mean time to failure decreases. In this presentation we describe 
an approach for enhancing resilience that allows programmers to explicitly express knowledge 
of the fault tolerance of their applications. This information is then used by a runtime inference 
engine to ameliorate faults that would today be unrecoverable. We have implemented some of 
these programming model extensions and evaluated their impact on the survival of real 
scientific and engineering codes when subjected to very aggressive fault injection rates. 
The results reveal that modest extensions to the programming model, exploited at runtime, can 
increase the probability that an application will run to a successful conclusion. This, in turn, 
ought to lead to a substantial increase in the check pointing interval and a reduction in 
redundant computation, both of which will reduce the time and energy required to solve the 
most demanding computational challenges. 
 
Programming Environment for Multi-Petascale and Exascale Simulations in the Frame of 
Large Scale Scientific Simulation Codes in Reactor Physics 
Jérôme Dubois, Commissariat à l’Energie Atomique 
 
As for many engineering and scientific fields, high-performance computing is now an essential 
tool in Reactor physics. The high levels of requirements in this domain for simulation codes 
imply several qualities like reliability, robustness, a high level of performances, as well as 
maintainability and portability. Another characteristic which has a deep impact in the design of 
these codes, is the long lifecycles (>20 years). With recent hardware evolutions (GPUs, Xeon 
Phi, ARM, DSPs…) and the associated software ones (CUDA, OpenCL, dedicated 
languages…), but also the continued growth of parallelism degree and parallelism levels or the 
importance of memory hierarchy between computing units, we are thinking and preparing the 
next generation of reactor physics applications to efficiently use computers from the lab scale to 
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supercomputers at post petascale. In this frame, we want to give an overview of our current 
work for heterogeneous and petascale computing, and discuss what could be interesting in 
terms of software evolution and programming environment for post peta and exascale 
computing in order to design next generation codes for reactor physics simulations. 
 
Designing a Unified Programming Model for Heterogeneous Machines  
Michael Garland, NVIDIA 
 
While high-efficiency machines are increasingly embracing heterogeneous architectures and 
massive multithreading, contemporary mainstream programming languages reflect a mental 
model in which processing elements are homogeneous, concurrency is limited, and memory is a 
flat undifferentiated pool of storage. Moreover, the current state-of-the-art in programming 
heterogeneous machines tends towards using separate programming models for different 
portions of the machine. Both of these factors make programming emerging heterogeneous 
machines unnecessarily difficult. 
 
Our languages need to evolve to embrace machines that are fundamentally heterogeneous. 
Languages such as C++ are beginning to incorporate basic parallel primitives, and this trend 
must continue as architectures continue to evolve. I will describe our recent work on a unified 
programming model for heterogeneous machines. It provides constructs for bulk parallelism, 
synchronization, and data placement embedded in the C++ language. We have implemented a 
prototype in C++, which is able to launch and coordinate work on both CPU and GPU 
processors within a single node using OpenMP and CUDA, and by leveraging the GASNet 
runtime, is able to run across all the nodes of a distributed-memory machine. 
 
Anticipated Programming Models for Scale-Bridging Materials Science at Exascale  
Timothy Germann, Los Alamos National Laboratory 
 
Computational materials scientists have been among the earliest and heaviest users of 
leadership-class supercomputers. The codes and algorithms that have been developed span a 
wide range of physical scales and have been useful, not only for gaining scientific insight, but 
also as test beds for exploring new approaches for tacking evolving challenges, including 
massive (nearly million-way) concurrency, an increased need for fault and power management, 
and data bottlenecks. As examples, I will describe our classical molecular dynamics simulations 
as early users on the LLNL BG/L and LANL Roadrunner platforms, including in situ analysis 
and visualization of trillion-atom simulations. Multiscale, or scale-bridging, techniques are 
attractive from both materials science and computational perspectives, particularly as we look 
ahead from the current petascale era towards the exascale platforms expected to be deployed 
by the end of this decade. 
 
In particular, the increasingly heterogeneous and hierarchical nature of computer architectures 
demands that algorithms, programming models, and tools must mirror these characteristics if 
they are to thrive in this environment. Given the increasing complexity of such high-performance 
computing ecosystems (architectures, software stack, and application codes), computational 
“co-design” is recognized to be critical as we move from current petascale to exascale 
supercomputers over the rest of this decade. The Exascale Co-design Center for Materials in 
Extreme Environments (ExMatEx) is an effort to do this by initiating an early and extensive 
collaboration between computational materials scientists, computer scientists, and hardware 
manufacturers. Our goal is to develop the algorithms for modeling materials subjected 
to extreme mechanical and radiation environments, and the necessary programming models 
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and runtime systems (middleware) to enable their execution, and also influence potential 
architecture design choices for future exascale systems. 
 
Performance, Correctness, and Programmability: Challenges for Parallel Programming at 
Exascale 
William Gropp, University of Illinois at Urbana-Champaign 
 
Extreme scale machines are designed to enable the solution of some of the most difficult and 
challenging problems faced by scientists and engineers. Programming for these machines must 
address the issues to achieve performance for large, complex applications while providing for 
correctness and maintainability in the code. This talk will review some of the history of 
programming for extreme-scale systems, discuss the elements behind the success of MPI 
through petascale systems, and cover some of the new challenges that must be addressed for 
the next generations of extreme-scale systems. 
 
Algorithms and Programming Models for Coupled-cluster Methods  
Jeff Hammond, Argonne National Laboratory  
 
Quantum chemistry applications have long been associated with irregular communication 
patterns and load-balancing, which motivated the development of Global Arrays (GA), the 
Distributed Data Interface (DDI) and, more recently, the Super Instruction Assembly Language 
(SIAL), which form the basis for essentially all parallel implementations of wave-function-based 
quantum chemistry methods, as found in codes like NWChem, GAMESS, ACES III and others. 
In this talk, the mathematical and algorithmic fundamentals of a popular family of quantum 
chemistry methods known as coupled-cluster methods, and various parallelization schemes 
associated with their implementation for supercomputers. First, we compare a variety of parallel 
runtimes (MPI, GA, DDI, SIAL, Charm++) on various axes, including asynchronous 
communication, dynamic load-balancing and data decomposition. Second, we describe the 
Cyclops Tensor Framework, which is a completely new approach to coupled-cluster methods 
that uses some of the key concepts found in TCE, GA and Charm++, specifically, an abstract 
interface for tensor contractions, domain-specific distributed data structures and topology 
awareness. Finally, programming model requirements for reduced-scaling coupled-cluster 
methods are considered. 
 
Compiler Supported Language with an Adaptive Runtime 
Laxmikant (Sanjay) Kale, University of Illinois at Urbana-Champaign 
 
How to conquer the complexity of parallel programming is a topic that has been debated since 
the inception of the field. Various attempts at doing so, including parallelizing compilers, and 
other higher level languages such as HPF, have not succeeded. Within the scalable parallel 
computing field, some of the reasons for this failure have to do with the high premium placed on 
"performance" by practitioners, and the inability of the complex and sophisticated compiler 
analysis techniques to deliver performance and useful abstraction in a uniform manner. We 
argue that a relatively simple compilation support, based on well understood techniques in static 
analysis, can help improve the productivity substantially, if it is linked with a rich and 
sophisticated (and therefore complex) programming substrate provided by an adaptive runtime 
system. 
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Specifically, I will present Charj, a compiler-supported language we are designing based on the 
Charm++ runtime system. I will illustrate the potential and realized productivity benefits using 
basic analysis techniques, code generation, and support for convenient syntax. 
 
Power and Cooling Aware Parallel Performance Diagnosis 
Karen L. Karavanic, Portland State University 
 
Increasing concern about the power consumption of data centers and computer laboratories, 
which in some cases matches or exceeds the resources required to power a small city, drive a 
need for a new, integrated approach to parallel performance diagnosis that integrates traditional 
application-oriented performance data with measurements of the physical runtime environment. 
We have developed infrastructure for combined evaluation of system, application, and machine 
room performance in the high-end environment. We present a new intensity metric for use in 
automated performance diagnosis tools, and show results from a case study of the 
performance, power and cooling impact of the choice of physical location for a scientific 
application within the machine room.   
 
Preparing Quantum Monte Carlo for Exascale Era 
Jeongnim Kim, Oak Ridge National Laboratory 
 
Many levels of parallelism are afforded by quantum Monte Carlo (QMC) algorithms, making 
QMC intrinsically scalable and ideally suited to take advantage of the growth in computational 
power. Improved compilers and supports for open standards, together with advances in 
hardware, have been crucial to performance and productivity increase, allowing developers to 
focus on innovations in QMC, new forms of correlated wave functions, efficient and robust 
optimization methods, and numerical techniques. I review current hybrid programming, 
OpenMP/MPI or CUDA/MPI, in QMCPACK and examine viable solutions to meet many 
challenges posed by increasing concurrency and heterogeneity of future architectures and 
changing programming environments from QMC developers' perspective. 
 
TASCEL: Concrete Ingredients for Flexible Programming Abstractions  
Sriram Krishnamoorthy, Pacific Northwest National Laboratory 
 
The difficulties in programming exascale systems have led to a renewed interest in finer-grained 
concurrency. These abstractions allow the software stack (compilers, runtime, OS) to manage 
system resources and react to events without onerous programmer involvement. While elegant, 
effective realizations of such programming abstractions require advancements in automated 
management of concurrency, resilience, and power/energy consumption. In this talk, I will 
present our experiences in designing some key algorithms that underpin such automation. 
 
Novel Parallel Algorithms for High-Accuracy Coupled-Cluster Calculations  
Karol Kowalski, Pacific Northwest National Laboratory  
 
Over the last few decades, coupled cluster (CC) theory has evolved into a basic formalism for 
the description of correlation effects in a plethora of many-electron systems. This progress can 
be attributed to the development of new CC methods capable of providing highly-accurate 
descriptions of the correlation effects and to the development of highly scalable CC codes 
capable of overcoming unfavorable numerical complexity of CC methods. In this talk, we will 
discuss how the development of highly specialized parallel tools has advanced the field of high-
precision CC calculations for large molecular systems. Selected examples will illustrate the 
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progress in two areas of CC formulations: (1) excited-state equation-of-motion CC theories and 
(2) high-precision multi-reference CC methods for strongly correlated systems.  
 
HPC Challenges in Oil & Gas Upstream Scientific Applications  
Terrence Liao, TOTAL E&P Research & Technology USA, LLC  
 
Overview on typical scientific applications that oil and gas companies use for exploration and 
production (E&P).  Applications such as seismic imaging, basin modeling, engineering 
(drilling/subsurface), and reservoir simulation. Basic concepts are shown. Typical numerical 
methods are mentioned. And, finally, HPC challenges are discussed. 
 
The Advancement or Lack of Advancement in Programming Models over the Past 45 
Years  
John Levesque, Cray, Inc.  
 
This talk will cover how programming for high-performance computers has changed over the 
last 45 years. Yes, in 1968 I joined Sandia Laboratories in Albuquerque, New Mexico while 
attending University of New Mexico. At that time the main computational workhorse was the 
CDC 3600. My tasks mostly included preparing charts of data collected from nuclear and non-
nuclear tests in Nevada. I then started my journey through the progression of supercomputers 
such as the CDC 6600, CDC 7600, Star 100, Illiac IV, Cray 1, Cyber 203 & 205 Cray 1S, Cray 
XMP, Cray YMP, ETA 10, NEC SXs, Fujitsu VPP, Hitachi VP, Ncude MPP, Intel Paragon, 
numerous attached array processors, Thinking Machines CM2, CM5, Alliant FX, Convex, 
Supertek, SGI origin, IBM SPs, Cray XT and now the Cray XK6, NVIDIA Fermi and Kepler, Intel 
MIC. I may have missed one or two. 
 
My entire career has been about getting the most out of the target system. Scalar Optimization 
on the CDC 6600, Software pipelining on the CDC 7600, Vectorization on the Crays, Shared 
Memory parallelism on the various Vector SMPS, SIMDization on the Connection Machine, 
Message passing on every machine since the early MPPs. 
 
So what have I learned? Why am I so adamant about “smart” programming? Why do I cringe 
when I hear the word productivity? Please bring MAALOX, since you may not agree with me 
and, after all, you will be eating. 
 
Multi-Level Programming Paradigms for Exascale Computing  
Serge Petiton, University of Lille  
 
Exascale hyper-computers are expected to have highly hierarchical architectures with nodes 
composed by lot-of-core processors and accelerators. Energy consumption minimization and 
high latencies between farther cores lead to optimize communications, especially global ones. 
Methods have to be redesigned and new ones introduced or rehabilitated in terms of 
communication optimizations. 
 
The different programming levels (from clusters of processors loosely connected to tightly 
connected lot-of-core processors and/or accelerators) will generate new difficult algorithm 
issues. New language and framework should be defined and evaluated with respect to modern 
state-of-the-art scientific methods. We propose a framework, called YML (yml.prism.uvsq.fr), 
associated with a multi-level programming paradigm, to explore extreme computing and avoid 
costly global communications and reductions. 
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YML, with its high-level language, permits to automate and delegate the management of 
dependencies between loosely coupled clusters of processors to a specialized tool, which 
controls the execution of the application. Besides, the tightly coupled processors inside each 
cluster could be programmed through a language such as XMP (http://www.xcalablemp.org/). 
Thanks to the component-oriented software architecture of YML, it is relatively easy to integrate 
new components such as numerical libraries, encapsulated XMP programs for lower level of the 
computer architecture, etc. Each of the components may also use runtime system or tools to 
use accelerators. 
 
In this talk, we present this multi-level programming paradigm for exascale computing and 
propose our approach based on YML. We discuss orchestration and scheduling strategies to 
develop in order to minimize communications and I/O.  
 
A GA-Based Approach to Automated Data Management for Parallel Quantum Monte Carlo 
Applications 
P. Saday Sadayappan, Ohio State University  
 
Quantum Monte Carlo (QMC) applications perform simulation with respect to an initial state-of-
the-quantum mechanical system, which is often captured using the cubic B-spline basis. This 
representation is stored as a read-only table of coefficients and accesses to the table are 
generated at random as part of the Monte Carlo simulation. Current QMC applications such as 
QWalk and QMCPACK replicate this table at every process or node, which limits scalability, 
because increasing the number of processors does not enable larger systems to be run. We will 
describe a Partitioned Global Address Space (PGAS) approach to transparently managing this 
data using Global Arrays in a manner that allows the memory of multiple nodes to be 
aggregated. Experimental results with the QWalk application demonstrate the effectiveness of 
the data management system. 
 
Exascale Challenges for Programming Models in Fusion Energy Sciences  
William M. Tang, Princeton University 
 
Advanced computing is generally recognized to be an increasingly vital tool for accelerating 
progress in scientific research in the 21st Century. The imperative is to translate the combination 
of the rapid advances in supercomputing power together with the emergence of effective new 
algorithms and computational methodologies to help enable corresponding increases in the 
physics fidelity and the performance of the scientific codes used to model complex physical 
systems. If properly validated against experimental measurements and verified with 
mathematical tests and computational benchmarks, these codes can provide more reliable 
predictive capability for the behavior of complex systems, including fusion-energy-relevant high-
temperature plasmas. The fusion energy research community has made excellent progress in 
developing advanced codes with associated programming models for which computer runtime 
and problem size scale well with the number of processors on massively parallel 
supercomputers. A good example is the effective usage of the full power of modern leadership 
class computational platforms from the terascale to the petascale and beyond to produce non-
linear particle-in-cell simulations, which have accelerated progress in understanding the nature 
of plasma turbulence in magnetically confined high-temperature plasmas. Illustrative results 
provide great encouragement for being able to include increasingly realistic dynamics in 
extreme scale computing campaigns to enable predictive simulations with unprecedented 
physics fidelity. Some illustrative examples of algorithmic progress from the Fusion Energy 
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Sciences area in dealing with low memory per core extreme scale computing challenges will be 
included in this presentation. 
 
Energy-Efficient and Reliable Programming Models at Exascale  
Abhinav Vishnu, Pacific Northwest National Laboratory  
 
Energy consumption is the primary constraint in designing exascale models. At the same time, 
the system reliability with low-voltage system components presents a precarious landscape for 
designing exascale programming models. This talk will address the challenges at the system 
software layer for designing reliable and energy-efficient programming models. The presentation 
will disseminate the approaches using PGAS models such as Global Arrays and associated 
communication runtime systems, such as ComEx/ARMCI.   
 
Avalanche: A Flow-Graph Framework for Simplifying the Use of Active Messages 
Jeremiah Willcock, Indiana University 
 
Graph and other highly irregular applications is an important problem domain for exascale 
systems.  However, programming such applications with high performance is difficult, even with 
specialized programming and execution models such as Active Pebbles or ParalleX. To mitigate 
this problem, we propose a flow-graph approach to implementing algorithms in terms of 
generalized active messages.  Our framework, written in standard C++11 on top of the AM++ 
implementation of Active Pebbles, provides a C++ set of combinators to build flow graphs at 
both compile-time and runtime. A standard compiler such as GCC is able to merge adjacent 
graph nodes in some situations, increasing performance and allowing a higher level of 
abstraction in application code. Experimental results show only a small decrease in 
performance relative to manually-written AM++ code due to compiler limitations. 
 
Productivity, Portability and Performance for Heterogeneous Systems  
Michael Wolfe, The Portland Group, Inc.  
 
Large-scale supercomputers are trending towards heterogeneous systems. Since 2003, large-
scale supercomputer systems have been dominated by those using commodity parts where 
economies of scale keep costs down. We predict what trends future supercomputer 
architectures will follow, and what programming models will be used for them. Productive 
programming models must be high-level enough to allow portability, but must expose enough of 
the architecture to avoid performance cliffs and pitfalls. We discuss several examples of high-
level and low-level programming models, and discuss what lessons to apply for the future. 
 
REX: REthinking the “X” in the “MPI+X” for Exascale Nodes  
Yonghong Yan, University of Houston 
 
There is broad agreement in the community that a major challenge to successful exascale 
application development and deployment will lie with their ability to exploit the computational 
resources within each node. Shared memory programming model, OpenMP, has been playing 
an important role in the approach for the current ``MPI + X'' programming model, where ``X'' 
addresses the node programming challenges. However, OpenMP will require significant 
enhancements if it is to meet the needs of an exascale node programming model, and there are 
already well-known limitations in hybrid MPI+OpenMP execution on current petascale systems. 
We believe that research to determine a suitable exascale node-programming model (“X”) that 
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integrates smoothly with the current and future inter-node model is critical for the successful 
development of the exascale software stack. 
 
In this talk, we will highlight our work of creating a productive node-level programming model, 
REX. REX was started with the enhancement of OpenMP with language features from APGAS 
languages at the node-level, an approach that will provide an easy migration path for existing 
code. The final goals will be a productive shared-memory programming model with 
implementation that addresses scalability, locality and heterogeneity challenges in exascale 
computing node.  We will also highlight the compiler and runtime challenges and solutions to 
realize the REX model.  
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POSTERS 
 
Exploiting Programming-Model Features to Optimize Energy 
K.J. Barker, D.J. Kerbyson, A. Vishnu, Pacific Northwest National Laboratory 
 
Sustainability of Numerical Libraries for Extreme Scale Computing 
Nahid Emad, PRiSM Laboratory, University of Versailles 
L. A. Drummond, Lawrence Berkeley National Laboratory  
 
The promise of computer systems with very large orders of processing elements cannot be 
realized without an effective solution that targets the programming model with a suitable 
programming environment. Nowadays, it is necessary to identify and rapidly make available 
robust software technologies to enable high-end computer applications to run efficiently on 
these emerging systems, and to enable the development of more complex and capable 
simulation codes for scientific and engineering applications. We review some of numerical 
libraries that have achieved modularity, scalability and extensibility thanks to their use of object-
oriented programming approaches. However, only a few of these libraries have managed to 
effectively implement sequential and parallel code reusability. Here, we discuss what is currently 
missing from existing library implementations and propose a programming model based on a 
modular and multi-level parallelism approach that has a strict separation between computational 
operations, data management and communication. We illustrate how this model makes it 
possible to design more scalable libraries by exploiting better their functionalities and even 
enable the formulation of hybrid numerical scheme to be run efficiently on multi-level parallel 
systems with a large number of heterogeneous processing units without confining the 
parallelism to the programming model of the communication library. 
 
We use the multiple explicitly restarted Arnoldi method as our test case and our 
implementations require full reuse of serial/parallel kernels in their implementation. Our 
experiments for which we made use of YML scientific workflow environment include 
comparisons with state-of-the-art numerical libraries on high-end computing systems. 
 
Expressing Graph Algorithms Using Active Messages: Runtime Optimization for 
Dynamic Problems 
Nick Edmonds and Andrew Lumsdaine, Center for Research in Extreme Scale Technologies, 
Indiana University 
 
Data-driven applications such as graph analytics are unique in that the computational structure 
of the applications is entirely dependent on the input data. This fact makes static analysis 
difficult and necessitates dynamic, lightweight, execution-time solutions. Version 2.0 of the 
Parallel Boost Graph Library (PBGL) demonstrates one approach to building a modular, 
scalable, and perhaps most importantly, performance portable set of graph kernels. The PBGL 
2.0 uses the AM++ active messaging library (an implementation of the Active Pebbles 
programming and execution model) to provide portable, generic, thread-safe messaging support 
on a variety of platforms. PBGL 2.0 provides a variety of graph types, auxiliary data structures, 
and algorithmic kernels suitable for both shared and distributed-memory parallelism (e.g. 
threads and processes) with the potential for straightforward extension to various types of 
accelerators.  
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Graph algorithms are phrased as collections of asynchronous, concurrently executing, tiny 
fragments of code which may be invoked both locally and in remote address spaces. The AM++ 
runtime performs a number of optimizations at runtime including message coalescing, message 
combining, and software routing. Balancing the costs of these optimizations–increased 
message latency, memory utilization–with the performance benefits–reduced message count, 
lower network injection rate, improved bandwidth utilization–requires a runtime that can 
dynamically adapt to changes in message volume, message traffic patterns, and resource 
utilization. AM++/PBGL already contains static forms of these optimizations; dynamic 
extensions are an active area of our research. 
 
Multiscale Simulation of Multicellular Biological System with MPI + Global Arrays + TBB 
Seunghwa Kang, William Cannon, and Simon Kahan, Pacific Northwest National Laboratory 
 
We present a high-performance computing (HPC) framework for predictive simulations for 
synthetic biology. Our goals are to simulate bacteria systems and precisely predict metabolite 
concentrations, thermodynamic energy requirements and design-directed evolution processes. 
The system allows us to simulate thousands of processes for 106 to 1015 cells, update cell 
state based on thermodynamics principles, and model energy flow within and between 
pathways, organisms, and surroundings. The HPC framework uses a hierarchical partitioning 
and load-balancing algorithm to exploit the opportunities and overcome the challenges. We 
employ a combination of programming models (MPI + Global Arrays + Thread Building Blocks 
(TBB)) to implement the algorithm with high software development productivity.  
 
Kanor & Harlan: Mixed Declarative Parallel Programming 
Andrew Lumsdaine, Arun Chauhan, William E. Byrd, Eric Holk, Joseph Cottam, Claire Alvis, 
Jeremiah Willcock, Nilesh Mahajan, Aaron Hsu, Center for Research in Extreme Scale 
Technologies, Indiana University 
 
We are convinced that declarative programming holds the most promise for programming large 
hybrid clusters, allowing users to specify the "what" not the "how" of data layout, data 
movement, and computation scheduling and coordination. In this poster we propose a 
declarative approach to programming hybrid clusters by combing two domain-specific 
languages (DSLs) we have developed: Kanor, for cluster programming; and Harlan, for GPGPU 
programming. 
 
Kanor allows programmers to specify dense and sparse collective communication in bulk 
synchronous parallel (BSP) style programs. Kanor provides a balance between declarativeness 
and performance predictability/tunability. Kanor allows the programmer to express collective or 
point-to-point communication succinctly, enabling the compiler to infer details such as the type 
of data being sent. 
 
Harlan enables the programmer to specify sections of code to run on the GPU or other 
accelerator over certain ranges of data. This level of expression gives the programmer control of 
where the computation takes place, and implicitly defines what data must move and when such 
movement must occur. However, the compiler and runtime maintain a great deal of flexibility to 
perform data layout transformations or optimizations such as pipelining. 
 
Declaratively specifying data layout, memory movement, and computation coordination 
requirements results in a system with well-defined (and verifiable) semantics. Moreover, a 
declarative approach provides opportunities for sophisticated optimizations, analyses, and tools. 
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Integrating Kanor and Harlan results in a unified, high-level, flexible tool suitable for efficiently 
programming hybrid clusters, traditional (CPU-based) clusters, and GPUs on a single machine.  
We illustrate the integration of Kanor and Harlan with an example: distributed Sparse Matrix 
Vector multiplication over a hybrid cluster. 
 
Developing Performance and Functionality Enhancements to the Global Arrays Toolkit 
B. Palmer, Pacific Northwest National Laboratory 
 
Mapping Molecular Dynamics Algorithmic Parallelism 
T.P. Straatsma, D.G. Chavarría-Miranda, D.J. Kerbyson, N.R. Tallent, A. Vishnu, N. Zuljevic, 
Pacific Northwest National Laboratory 
 
Molecular Dynamics (MD) simulations enable the study of the structure, dynamics and 
thermodynamics of chemical and biochemical systems. Parallel implementations of MD 
algorithms are communication-intensive and are further characterized by the need for frequent 
synchronization and global operations. Parallel implementation strategies are being redesigned 
to more effectively map the levels of algorithmic parallelism to the hierarchical hardware 
architectures of high-performance computers. 
 
A Hybrid Declarative/Imperative Approach for Irregular Applications 
Jeremiah Willcock and Andrew Lumsdaine, Indiana University 
 
Graph and other highly irregular applications is an important problem domain for exascale 
systems. However, programming such applications with high performance is difficult, even with 
specialized programming and execution models such as Active Pebbles or ParalleX. To mitigate 
this problem, we propose a hybrid declarative/imperative approach to specifying graph and 
related algorithms to execute on parallel computers. The model has some similarities to the 
semiring linear algebra approach used by Combinatorial BLAS, but is generalized further to a 
variant of relational algebra with explicit support for cyclic dependencies and explicit ordering of 
processing. We show work-in-progress on specifying and efficiently implementing such a model 
in the form of a domain-specific language. 
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