

Productive Programming Models for Exascale

Portland Marriott City Center

Portland, OR, August 14-15, 2012

We are pleased to announce the workshop on productive programming models for exascale

scientific modeling and simulation, and data analysis applications. The workshop will explore the

state-of-the-art in-parallel programming models, and discuss the future developments and

requirements that will allow both model and data-driven scientific applications to effectively use

peta- to exascale computer architectures. Discussions will focus on issues related to scalability,

fault resiliency, programmability, interoperability, performance diagnostics, power efficiency,

hardware technology, etc. In addition, recent accomplishments of a small number of domain

science application code development efforts will be highlighted.

Computer scientists working on programming models for high-performance computer

architectures, and computational scientists from several disciplines, are invited to discuss the

technical roadmap for productive programming models as well as the future requirements of a

variety of modeling and simulation, and large scale data analysis applications.

Key Objectives

 Highlight the effectiveness of high-level programming models within the computational

and computer science communities

 Present the research and development roadmap for library and language based

productive programming models

 Engage the computational sciences community to understand their current

computational challenges and future application needs and requirements

 Engage the computer science community to share ideas on interoperability and

scalability of programming models for next-generation computer architectures.

 Productive Programming Models for Exascale

August 14-15, 2012
Portland Marriott City Center, Portland, OR

3rd Floor – River Ballroom

Tuesday, August 14, 2012

Time Topic Speaker/Facilitator

7:30 – 8:00 Registration

8:00 – 8:30 Welcome and Introductions TP Straatsma

8:30 – 12:00 SESSION 1: Programming Models Abhinav Vishnu

8:30 – 9:00 “Exascale: your opportunity to create a decent HPC language” Brad Chamberlain

9:00 – 9:30 “Programming & Execution Models for Exascale: Abundant
Parallelism in the Presence of Constrained Resources”

Daniel Chavarría

9:30 – 10:00 “Performance, Correctness, and Programmability: Challenges for
Parallel Programming at Exascale”

William Gropp

10:00 – 10:45 “Multi-Level Programming Paradigms for Exascale Computing” Serge Petiton

10:45 – 11:15 “REX: REthinking the “X” in the “MPI+X” for Exascale Nodes” Yonghong Yan

11:15 – 12:00 “TASCEL: Concrete Ingredients for Flexible Programming
Abstractions”

Sriram Krishnamoorthy

12:00 – 13:30 Poster Introduction Presentations - Working Lunch ALL

13:30 – 16:45 SESSION 2: Applications Daniel Chavarría

13:30 – 14:00 “Exascale Challenges for Programming Models in Fusion Energy
Sciences”

William Tang

14:00 – 14:30 “Novel Parallel Algorithms for High-Accuracy Coupled-Cluster
Calculations”

Karol Kowalski

14:30 – 15:00 “Anticipated Programming Models for Scale-Bridging Materials
Science at Exascale”

Timothy Germann

15:00 – 15:45 “Programming Environment for Multi-Petascale and Exascale
Simulations in the Frame of Large Scale Scientific Simulation
Codes in Reactor Physics”

Jérôme Dubois

15:45 – 16:15 “HPC Challenges in Oil & Gas Upstream Scientific Applications” Terrence Liao

16:15 – 16:45 “A GA Based Approach to Automated Data Management for
Parallel Quantum Monte Carlo Applications”

P. Saday Sadayappan

16:45 – 19:00 Poster Session – Rogue Room ALL

19:00 – 20:30 Keynote Presentation – Working Dinner
“The Advancement or Lack of Advancement in Programming
Models Over the Past 45 Years”

John Levesque

 Productive Programming Models for Exascale

August 14-15, 2012
Portland Marriott City Center, Portland, OR

3rd Floor – River Ballroom

Wednesday, August 15, 2012

Time Topic Speaker/Facilitator

7:30 – 8:00 Registration

8:00 – 8:30 Day 2 Objectives TP Straatsma

8:30 – 12:15 SESSION 3: Cross-cutting: Resiliency, Power and Performance Sriram Krishnamoorthy

8:30 – 9:00 “Energy Efficient and Reliable Programming Models at Exascale” Abhinav Vishnu

9:00 – 9:30 “Programming Models Extensions for Resilience at Extreme
Scale”

Pedro Diniz

9:30 – 10:00 “Power- and Cooling- Aware Parallel Performance Diagnosis” Karen Karavanic

10:00 – 10:45 “Poking the Soft Underbelly of Programmer Productivity on
Exascale”

George Almasi

10:45 – 11:15 “Message Passing in Hierarchical and Heterogeneous
Environments: MPI-3 and Beyond”

Pavan Balaji

11:15 – 11:45 “Improving Programmer Productivity: A Hardware Perspective” Doug Carmean

11:45 – 12:15 “Avalanche: A Flow-Graph Framework for Simplifying the Use of
Active Messages”

Jeremiah Willcock

12:15 – 13:30 Discussion of Panel Topics – Working Lunch ALL

13:30 – 18:00 SESSION 4: Cross-cutting: Languages and Applications Darren Kerbyson

13:30 – 14:00 “Charj: Compiler Supported Language with an Adaptive
Runtime”

Sanjay Kale

14:00 – 14:30 “Productivity, Portability and Performance for Heterogeneous
Systems”

Michael Wolfe

14:30 – 15:00 “Designing a Unified Programming Model for Heterogeneous
machines”

Michael Garland

15:00 – 15:45 “Algorithms and programming models for coupled-cluster
methods”

Jeff Hammond

15:45 – 16:15 “Super Instruction Architecture for Exascale Software
Engineering”

Beverly Sanders

16:15 – 16:45 “Preparing Quantum Monte Carlo for Exascale Era” Jeongnim Kim

16:45 – 17:15 TBD Robert Harrison

17:15 – 18:15 The Real Solution for Exascale Panel Discussion Fred Johnson

18:15 – 18:30 Closing Remarks - Adjourn TP Straatsma

file://Users/karen/Desktop/PDCS/PDCS%20proceedings/757-114.pdf

1

SPEAKERS

Poking the Soft Underbelly of Programmer Productivity on Exascale
George Almasi, IBM Corporation

I can't wait–I’m giddy at the prospect of programming an exascale machine...actually, I lie.
Programming exascale machines is likely to be dreadful. Our suffering will have four primary
causes: hardware architects with power-aware designs ("cache coherence is too power-
hungry"), system software people with good intentions ("I will take half your threads to
guarantee network progress"), oddball programming models (think thread synchronization
semantics on NVIDIA) and last but not least, the suffering we inflict on ourselves to realize every
last bit of performance. The prospect of fragile, un-portable and unmaintainable code looms.
Forewarned is forearmed. Let us examine–example by example–the risks we face; the sources
of bad programmer karma and what, if anything, may be done about them.

Message Passing in Hierarchical and Heterogeneous Environments: MPI-3 and Beyond
Pavan Balaji, Argonne National Laboratory

MPI is widely considered to be the de facto standard for parallel programming today. However,
as we move to extreme-scale systems with deeply hierarchical and heterogeneous computing
and memory subsystems, there is a lot of debate as to whether MPI (or "MPI+X") is still the right
programming model for parallel computing, or if something entirely new has to be invented. In
this talk, I will discuss a small subset of a large number of enhancements to MPI that various
researchers are looking into, to allow it to be function efficiently on modern computing systems.
These include enhancements being included in MPI-3 (such as one-sided communication,
topology management, and shared-memory interoperability) as well as more long-term
enhancements that could potentially be included in a later MPI standard (such as interoperability
with accelerators and compiler assistance to MPI).

Exascale: Your Opportunity to Create a Decent HPC Language
Brad Chamberlain, Cray, Inc.

In this talk, I'll summarize the technical challenges related to programming exascale systems
and outline why current HPC/DOE programming models are unlikely to be satisfactory for the
exascale era. I'll argue that while exascale brings significant challenges, it also represents an
opportune moment for the community to consider more general parallel programming models
that do a better job of separating hardware characteristics and implementation details from the
expression of parallel computations. I'll describe ways in which Chapel is well-positioned for
exascale computing and describe work that we've proposed to make it even better suited.
During the talk, I'll also attempt to address some of the social challenges related to getting new
programming models adopted and argue that it's important to avoid letting that inherent
uncertainty herd us toward conservative approaches.

2

Programming & Execution Models for Exascale: Abundant Parallelism in the Presence of
Constrained Resources
Daniel Chavarria, Pacific Northwest National Laboratory

The challenges of exascale are many: expected extremely high hardware component counts,
power and energy constraints, reliability constraints, and an evolving hardware architecture
picture. Programming and execution models must be prepared to address these challenges in a
general and abstract manner that is not tied to specific architectural features. In particular, the
expression and management of parallelism are on the critical path for programming and
execution models at exascale. We will present our work on a set of techniques and methods
that try to address these challenges.

Programming Models Extensions for Resilience at Extreme Scale
Pedro Diniz, University of Southern California

Future high-performance computing systems will be constructed with exascale technology
whose VLSI devices will be less reliable than those used today, and faults will become the
norm, not the exception. This will pose significant problems for developers and users, who for
half-a-century have enjoyed an execution model that assumed correct behavior by the
underlying computing system. Well-known techniques for hardening systems built from
unreliable components, such as triple modular redundancy (TMR), will be too expensive in
energy and execution time to be used throughout an extreme scale high-performance
computing system.

Furthermore, today's most common technique for fault recovery, checkpoint/restart, will become
prohibitively expensive as the mean time to failure decreases. In this presentation we describe
an approach for enhancing resilience that allows programmers to explicitly express knowledge
of the fault tolerance of their applications. This information is then used by a runtime inference
engine to ameliorate faults that would today be unrecoverable. We have implemented some of
these programming model extensions and evaluated their impact on the survival of real
scientific and engineering codes when subjected to very aggressive fault injection rates.
The results reveal that modest extensions to the programming model, exploited at runtime, can
increase the probability that an application will run to a successful conclusion. This, in turn,
ought to lead to a substantial increase in the check pointing interval and a reduction in
redundant computation, both of which will reduce the time and energy required to solve the
most demanding computational challenges.

Programming Environment for Multi-Petascale and Exascale Simulations in the Frame of
Large Scale Scientific Simulation Codes in Reactor Physics
Jérôme Dubois, Commissariat à l’Energie Atomique

As for many engineering and scientific fields, high-performance computing is now an essential
tool in Reactor physics. The high levels of requirements in this domain for simulation codes
imply several qualities like reliability, robustness, a high level of performances, as well as
maintainability and portability. Another characteristic which has a deep impact in the design of
these codes, is the long lifecycles (>20 years). With recent hardware evolutions (GPUs, Xeon
Phi, ARM, DSPs…) and the associated software ones (CUDA, OpenCL, dedicated
languages…), but also the continued growth of parallelism degree and parallelism levels or the
importance of memory hierarchy between computing units, we are thinking and preparing the
next generation of reactor physics applications to efficiently use computers from the lab scale to

3

supercomputers at post petascale. In this frame, we want to give an overview of our current
work for heterogeneous and petascale computing, and discuss what could be interesting in
terms of software evolution and programming environment for post peta and exascale
computing in order to design next generation codes for reactor physics simulations.

Designing a Unified Programming Model for Heterogeneous Machines
Michael Garland, NVIDIA

While high-efficiency machines are increasingly embracing heterogeneous architectures and
massive multithreading, contemporary mainstream programming languages reflect a mental
model in which processing elements are homogeneous, concurrency is limited, and memory is a
flat undifferentiated pool of storage. Moreover, the current state-of-the-art in programming
heterogeneous machines tends towards using separate programming models for different
portions of the machine. Both of these factors make programming emerging heterogeneous
machines unnecessarily difficult.

Our languages need to evolve to embrace machines that are fundamentally heterogeneous.
Languages such as C++ are beginning to incorporate basic parallel primitives, and this trend
must continue as architectures continue to evolve. I will describe our recent work on a unified
programming model for heterogeneous machines. It provides constructs for bulk parallelism,
synchronization, and data placement embedded in the C++ language. We have implemented a
prototype in C++, which is able to launch and coordinate work on both CPU and GPU
processors within a single node using OpenMP and CUDA, and by leveraging the GASNet
runtime, is able to run across all the nodes of a distributed-memory machine.

Anticipated Programming Models for Scale-Bridging Materials Science at Exascale
Timothy Germann, Los Alamos National Laboratory

Computational materials scientists have been among the earliest and heaviest users of
leadership-class supercomputers. The codes and algorithms that have been developed span a
wide range of physical scales and have been useful, not only for gaining scientific insight, but
also as test beds for exploring new approaches for tacking evolving challenges, including
massive (nearly million-way) concurrency, an increased need for fault and power management,
and data bottlenecks. As examples, I will describe our classical molecular dynamics simulations
as early users on the LLNL BG/L and LANL Roadrunner platforms, including in situ analysis
and visualization of trillion-atom simulations. Multiscale, or scale-bridging, techniques are
attractive from both materials science and computational perspectives, particularly as we look
ahead from the current petascale era towards the exascale platforms expected to be deployed
by the end of this decade.

In particular, the increasingly heterogeneous and hierarchical nature of computer architectures
demands that algorithms, programming models, and tools must mirror these characteristics if
they are to thrive in this environment. Given the increasing complexity of such high-performance
computing ecosystems (architectures, software stack, and application codes), computational
“co-design” is recognized to be critical as we move from current petascale to exascale
supercomputers over the rest of this decade. The Exascale Co-design Center for Materials in
Extreme Environments (ExMatEx) is an effort to do this by initiating an early and extensive
collaboration between computational materials scientists, computer scientists, and hardware
manufacturers. Our goal is to develop the algorithms for modeling materials subjected
to extreme mechanical and radiation environments, and the necessary programming models

4

and runtime systems (middleware) to enable their execution, and also influence potential
architecture design choices for future exascale systems.

Performance, Correctness, and Programmability: Challenges for Parallel Programming at
Exascale
William Gropp, University of Illinois at Urbana-Champaign

Extreme scale machines are designed to enable the solution of some of the most difficult and
challenging problems faced by scientists and engineers. Programming for these machines must
address the issues to achieve performance for large, complex applications while providing for
correctness and maintainability in the code. This talk will review some of the history of
programming for extreme-scale systems, discuss the elements behind the success of MPI
through petascale systems, and cover some of the new challenges that must be addressed for
the next generations of extreme-scale systems.

Algorithms and Programming Models for Coupled-cluster Methods
Jeff Hammond, Argonne National Laboratory

Quantum chemistry applications have long been associated with irregular communication
patterns and load-balancing, which motivated the development of Global Arrays (GA), the
Distributed Data Interface (DDI) and, more recently, the Super Instruction Assembly Language
(SIAL), which form the basis for essentially all parallel implementations of wave-function-based
quantum chemistry methods, as found in codes like NWChem, GAMESS, ACES III and others.
In this talk, the mathematical and algorithmic fundamentals of a popular family of quantum
chemistry methods known as coupled-cluster methods, and various parallelization schemes
associated with their implementation for supercomputers. First, we compare a variety of parallel
runtimes (MPI, GA, DDI, SIAL, Charm++) on various axes, including asynchronous
communication, dynamic load-balancing and data decomposition. Second, we describe the
Cyclops Tensor Framework, which is a completely new approach to coupled-cluster methods
that uses some of the key concepts found in TCE, GA and Charm++, specifically, an abstract
interface for tensor contractions, domain-specific distributed data structures and topology
awareness. Finally, programming model requirements for reduced-scaling coupled-cluster
methods are considered.

Compiler Supported Language with an Adaptive Runtime
Laxmikant (Sanjay) Kale, University of Illinois at Urbana-Champaign

How to conquer the complexity of parallel programming is a topic that has been debated since
the inception of the field. Various attempts at doing so, including parallelizing compilers, and
other higher level languages such as HPF, have not succeeded. Within the scalable parallel
computing field, some of the reasons for this failure have to do with the high premium placed on
"performance" by practitioners, and the inability of the complex and sophisticated compiler
analysis techniques to deliver performance and useful abstraction in a uniform manner. We
argue that a relatively simple compilation support, based on well understood techniques in static
analysis, can help improve the productivity substantially, if it is linked with a rich and
sophisticated (and therefore complex) programming substrate provided by an adaptive runtime
system.

5

Specifically, I will present Charj, a compiler-supported language we are designing based on the
Charm++ runtime system. I will illustrate the potential and realized productivity benefits using
basic analysis techniques, code generation, and support for convenient syntax.

Power and Cooling Aware Parallel Performance Diagnosis
Karen L. Karavanic, Portland State University

Increasing concern about the power consumption of data centers and computer laboratories,
which in some cases matches or exceeds the resources required to power a small city, drive a
need for a new, integrated approach to parallel performance diagnosis that integrates traditional
application-oriented performance data with measurements of the physical runtime environment.
We have developed infrastructure for combined evaluation of system, application, and machine
room performance in the high-end environment. We present a new intensity metric for use in
automated performance diagnosis tools, and show results from a case study of the
performance, power and cooling impact of the choice of physical location for a scientific
application within the machine room.

Preparing Quantum Monte Carlo for Exascale Era
Jeongnim Kim, Oak Ridge National Laboratory

Many levels of parallelism are afforded by quantum Monte Carlo (QMC) algorithms, making
QMC intrinsically scalable and ideally suited to take advantage of the growth in computational
power. Improved compilers and supports for open standards, together with advances in
hardware, have been crucial to performance and productivity increase, allowing developers to
focus on innovations in QMC, new forms of correlated wave functions, efficient and robust
optimization methods, and numerical techniques. I review current hybrid programming,
OpenMP/MPI or CUDA/MPI, in QMCPACK and examine viable solutions to meet many
challenges posed by increasing concurrency and heterogeneity of future architectures and
changing programming environments from QMC developers' perspective.

TASCEL: Concrete Ingredients for Flexible Programming Abstractions
Sriram Krishnamoorthy, Pacific Northwest National Laboratory

The difficulties in programming exascale systems have led to a renewed interest in finer-grained
concurrency. These abstractions allow the software stack (compilers, runtime, OS) to manage
system resources and react to events without onerous programmer involvement. While elegant,
effective realizations of such programming abstractions require advancements in automated
management of concurrency, resilience, and power/energy consumption. In this talk, I will
present our experiences in designing some key algorithms that underpin such automation.

Novel Parallel Algorithms for High-Accuracy Coupled-Cluster Calculations
Karol Kowalski, Pacific Northwest National Laboratory

Over the last few decades, coupled cluster (CC) theory has evolved into a basic formalism for
the description of correlation effects in a plethora of many-electron systems. This progress can
be attributed to the development of new CC methods capable of providing highly-accurate
descriptions of the correlation effects and to the development of highly scalable CC codes
capable of overcoming unfavorable numerical complexity of CC methods. In this talk, we will
discuss how the development of highly specialized parallel tools has advanced the field of high-
precision CC calculations for large molecular systems. Selected examples will illustrate the

6

progress in two areas of CC formulations: (1) excited-state equation-of-motion CC theories and
(2) high-precision multi-reference CC methods for strongly correlated systems.

HPC Challenges in Oil & Gas Upstream Scientific Applications
Terrence Liao, TOTAL E&P Research & Technology USA, LLC

Overview on typical scientific applications that oil and gas companies use for exploration and
production (E&P). Applications such as seismic imaging, basin modeling, engineering
(drilling/subsurface), and reservoir simulation. Basic concepts are shown. Typical numerical
methods are mentioned. And, finally, HPC challenges are discussed.

The Advancement or Lack of Advancement in Programming Models over the Past 45
Years
John Levesque, Cray, Inc.

This talk will cover how programming for high-performance computers has changed over the
last 45 years. Yes, in 1968 I joined Sandia Laboratories in Albuquerque, New Mexico while
attending University of New Mexico. At that time the main computational workhorse was the
CDC 3600. My tasks mostly included preparing charts of data collected from nuclear and non-
nuclear tests in Nevada. I then started my journey through the progression of supercomputers
such as the CDC 6600, CDC 7600, Star 100, Illiac IV, Cray 1, Cyber 203 & 205 Cray 1S, Cray
XMP, Cray YMP, ETA 10, NEC SXs, Fujitsu VPP, Hitachi VP, Ncude MPP, Intel Paragon,
numerous attached array processors, Thinking Machines CM2, CM5, Alliant FX, Convex,
Supertek, SGI origin, IBM SPs, Cray XT and now the Cray XK6, NVIDIA Fermi and Kepler, Intel
MIC. I may have missed one or two.

My entire career has been about getting the most out of the target system. Scalar Optimization
on the CDC 6600, Software pipelining on the CDC 7600, Vectorization on the Crays, Shared
Memory parallelism on the various Vector SMPS, SIMDization on the Connection Machine,
Message passing on every machine since the early MPPs.

So what have I learned? Why am I so adamant about “smart” programming? Why do I cringe
when I hear the word productivity? Please bring MAALOX, since you may not agree with me
and, after all, you will be eating.

Multi-Level Programming Paradigms for Exascale Computing
Serge Petiton, University of Lille

Exascale hyper-computers are expected to have highly hierarchical architectures with nodes
composed by lot-of-core processors and accelerators. Energy consumption minimization and
high latencies between farther cores lead to optimize communications, especially global ones.
Methods have to be redesigned and new ones introduced or rehabilitated in terms of
communication optimizations.

The different programming levels (from clusters of processors loosely connected to tightly
connected lot-of-core processors and/or accelerators) will generate new difficult algorithm
issues. New language and framework should be defined and evaluated with respect to modern
state-of-the-art scientific methods. We propose a framework, called YML (yml.prism.uvsq.fr),
associated with a multi-level programming paradigm, to explore extreme computing and avoid
costly global communications and reductions.

7

YML, with its high-level language, permits to automate and delegate the management of
dependencies between loosely coupled clusters of processors to a specialized tool, which
controls the execution of the application. Besides, the tightly coupled processors inside each
cluster could be programmed through a language such as XMP (http://www.xcalablemp.org/).
Thanks to the component-oriented software architecture of YML, it is relatively easy to integrate
new components such as numerical libraries, encapsulated XMP programs for lower level of the
computer architecture, etc. Each of the components may also use runtime system or tools to
use accelerators.

In this talk, we present this multi-level programming paradigm for exascale computing and
propose our approach based on YML. We discuss orchestration and scheduling strategies to
develop in order to minimize communications and I/O.

A GA-Based Approach to Automated Data Management for Parallel Quantum Monte Carlo
Applications
P. Saday Sadayappan, Ohio State University

Quantum Monte Carlo (QMC) applications perform simulation with respect to an initial state-of-
the-quantum mechanical system, which is often captured using the cubic B-spline basis. This
representation is stored as a read-only table of coefficients and accesses to the table are
generated at random as part of the Monte Carlo simulation. Current QMC applications such as
QWalk and QMCPACK replicate this table at every process or node, which limits scalability,
because increasing the number of processors does not enable larger systems to be run. We will
describe a Partitioned Global Address Space (PGAS) approach to transparently managing this
data using Global Arrays in a manner that allows the memory of multiple nodes to be
aggregated. Experimental results with the QWalk application demonstrate the effectiveness of
the data management system.

Exascale Challenges for Programming Models in Fusion Energy Sciences
William M. Tang, Princeton University

Advanced computing is generally recognized to be an increasingly vital tool for accelerating
progress in scientific research in the 21st Century. The imperative is to translate the combination
of the rapid advances in supercomputing power together with the emergence of effective new
algorithms and computational methodologies to help enable corresponding increases in the
physics fidelity and the performance of the scientific codes used to model complex physical
systems. If properly validated against experimental measurements and verified with
mathematical tests and computational benchmarks, these codes can provide more reliable
predictive capability for the behavior of complex systems, including fusion-energy-relevant high-
temperature plasmas. The fusion energy research community has made excellent progress in
developing advanced codes with associated programming models for which computer runtime
and problem size scale well with the number of processors on massively parallel
supercomputers. A good example is the effective usage of the full power of modern leadership
class computational platforms from the terascale to the petascale and beyond to produce non-
linear particle-in-cell simulations, which have accelerated progress in understanding the nature
of plasma turbulence in magnetically confined high-temperature plasmas. Illustrative results
provide great encouragement for being able to include increasingly realistic dynamics in
extreme scale computing campaigns to enable predictive simulations with unprecedented
physics fidelity. Some illustrative examples of algorithmic progress from the Fusion Energy

8

Sciences area in dealing with low memory per core extreme scale computing challenges will be
included in this presentation.

Energy-Efficient and Reliable Programming Models at Exascale
Abhinav Vishnu, Pacific Northwest National Laboratory

Energy consumption is the primary constraint in designing exascale models. At the same time,
the system reliability with low-voltage system components presents a precarious landscape for
designing exascale programming models. This talk will address the challenges at the system
software layer for designing reliable and energy-efficient programming models. The presentation
will disseminate the approaches using PGAS models such as Global Arrays and associated
communication runtime systems, such as ComEx/ARMCI.

Avalanche: A Flow-Graph Framework for Simplifying the Use of Active Messages
Jeremiah Willcock, Indiana University

Graph and other highly irregular applications is an important problem domain for exascale
systems. However, programming such applications with high performance is difficult, even with
specialized programming and execution models such as Active Pebbles or ParalleX. To mitigate
this problem, we propose a flow-graph approach to implementing algorithms in terms of
generalized active messages. Our framework, written in standard C++11 on top of the AM++
implementation of Active Pebbles, provides a C++ set of combinators to build flow graphs at
both compile-time and runtime. A standard compiler such as GCC is able to merge adjacent
graph nodes in some situations, increasing performance and allowing a higher level of
abstraction in application code. Experimental results show only a small decrease in
performance relative to manually-written AM++ code due to compiler limitations.

Productivity, Portability and Performance for Heterogeneous Systems
Michael Wolfe, The Portland Group, Inc.

Large-scale supercomputers are trending towards heterogeneous systems. Since 2003, large-
scale supercomputer systems have been dominated by those using commodity parts where
economies of scale keep costs down. We predict what trends future supercomputer
architectures will follow, and what programming models will be used for them. Productive
programming models must be high-level enough to allow portability, but must expose enough of
the architecture to avoid performance cliffs and pitfalls. We discuss several examples of high-
level and low-level programming models, and discuss what lessons to apply for the future.

REX: REthinking the “X” in the “MPI+X” for Exascale Nodes
Yonghong Yan, University of Houston

There is broad agreement in the community that a major challenge to successful exascale
application development and deployment will lie with their ability to exploit the computational
resources within each node. Shared memory programming model, OpenMP, has been playing
an important role in the approach for the current ``MPI + X'' programming model, where ``X''
addresses the node programming challenges. However, OpenMP will require significant
enhancements if it is to meet the needs of an exascale node programming model, and there are
already well-known limitations in hybrid MPI+OpenMP execution on current petascale systems.
We believe that research to determine a suitable exascale node-programming model (“X”) that

9

integrates smoothly with the current and future inter-node model is critical for the successful
development of the exascale software stack.

In this talk, we will highlight our work of creating a productive node-level programming model,
REX. REX was started with the enhancement of OpenMP with language features from APGAS
languages at the node-level, an approach that will provide an easy migration path for existing
code. The final goals will be a productive shared-memory programming model with
implementation that addresses scalability, locality and heterogeneity challenges in exascale
computing node. We will also highlight the compiler and runtime challenges and solutions to
realize the REX model.

10

POSTERS

Exploiting Programming-Model Features to Optimize Energy
K.J. Barker, D.J. Kerbyson, A. Vishnu, Pacific Northwest National Laboratory

Sustainability of Numerical Libraries for Extreme Scale Computing
Nahid Emad, PRiSM Laboratory, University of Versailles
L. A. Drummond, Lawrence Berkeley National Laboratory

The promise of computer systems with very large orders of processing elements cannot be
realized without an effective solution that targets the programming model with a suitable
programming environment. Nowadays, it is necessary to identify and rapidly make available
robust software technologies to enable high-end computer applications to run efficiently on
these emerging systems, and to enable the development of more complex and capable
simulation codes for scientific and engineering applications. We review some of numerical
libraries that have achieved modularity, scalability and extensibility thanks to their use of object-
oriented programming approaches. However, only a few of these libraries have managed to
effectively implement sequential and parallel code reusability. Here, we discuss what is currently
missing from existing library implementations and propose a programming model based on a
modular and multi-level parallelism approach that has a strict separation between computational
operations, data management and communication. We illustrate how this model makes it
possible to design more scalable libraries by exploiting better their functionalities and even
enable the formulation of hybrid numerical scheme to be run efficiently on multi-level parallel
systems with a large number of heterogeneous processing units without confining the
parallelism to the programming model of the communication library.

We use the multiple explicitly restarted Arnoldi method as our test case and our
implementations require full reuse of serial/parallel kernels in their implementation. Our
experiments for which we made use of YML scientific workflow environment include
comparisons with state-of-the-art numerical libraries on high-end computing systems.

Expressing Graph Algorithms Using Active Messages: Runtime Optimization for
Dynamic Problems
Nick Edmonds and Andrew Lumsdaine, Center for Research in Extreme Scale Technologies,
Indiana University

Data-driven applications such as graph analytics are unique in that the computational structure
of the applications is entirely dependent on the input data. This fact makes static analysis
difficult and necessitates dynamic, lightweight, execution-time solutions. Version 2.0 of the
Parallel Boost Graph Library (PBGL) demonstrates one approach to building a modular,
scalable, and perhaps most importantly, performance portable set of graph kernels. The PBGL
2.0 uses the AM++ active messaging library (an implementation of the Active Pebbles
programming and execution model) to provide portable, generic, thread-safe messaging support
on a variety of platforms. PBGL 2.0 provides a variety of graph types, auxiliary data structures,
and algorithmic kernels suitable for both shared and distributed-memory parallelism (e.g.
threads and processes) with the potential for straightforward extension to various types of
accelerators.

11

Graph algorithms are phrased as collections of asynchronous, concurrently executing, tiny
fragments of code which may be invoked both locally and in remote address spaces. The AM++
runtime performs a number of optimizations at runtime including message coalescing, message
combining, and software routing. Balancing the costs of these optimizations–increased
message latency, memory utilization–with the performance benefits–reduced message count,
lower network injection rate, improved bandwidth utilization–requires a runtime that can
dynamically adapt to changes in message volume, message traffic patterns, and resource
utilization. AM++/PBGL already contains static forms of these optimizations; dynamic
extensions are an active area of our research.

Multiscale Simulation of Multicellular Biological System with MPI + Global Arrays + TBB
Seunghwa Kang, William Cannon, and Simon Kahan, Pacific Northwest National Laboratory

We present a high-performance computing (HPC) framework for predictive simulations for
synthetic biology. Our goals are to simulate bacteria systems and precisely predict metabolite
concentrations, thermodynamic energy requirements and design-directed evolution processes.
The system allows us to simulate thousands of processes for 106 to 1015 cells, update cell
state based on thermodynamics principles, and model energy flow within and between
pathways, organisms, and surroundings. The HPC framework uses a hierarchical partitioning
and load-balancing algorithm to exploit the opportunities and overcome the challenges. We
employ a combination of programming models (MPI + Global Arrays + Thread Building Blocks
(TBB)) to implement the algorithm with high software development productivity.

Kanor & Harlan: Mixed Declarative Parallel Programming
Andrew Lumsdaine, Arun Chauhan, William E. Byrd, Eric Holk, Joseph Cottam, Claire Alvis,
Jeremiah Willcock, Nilesh Mahajan, Aaron Hsu, Center for Research in Extreme Scale
Technologies, Indiana University

We are convinced that declarative programming holds the most promise for programming large
hybrid clusters, allowing users to specify the "what" not the "how" of data layout, data
movement, and computation scheduling and coordination. In this poster we propose a
declarative approach to programming hybrid clusters by combing two domain-specific
languages (DSLs) we have developed: Kanor, for cluster programming; and Harlan, for GPGPU
programming.

Kanor allows programmers to specify dense and sparse collective communication in bulk
synchronous parallel (BSP) style programs. Kanor provides a balance between declarativeness
and performance predictability/tunability. Kanor allows the programmer to express collective or
point-to-point communication succinctly, enabling the compiler to infer details such as the type
of data being sent.

Harlan enables the programmer to specify sections of code to run on the GPU or other
accelerator over certain ranges of data. This level of expression gives the programmer control of
where the computation takes place, and implicitly defines what data must move and when such
movement must occur. However, the compiler and runtime maintain a great deal of flexibility to
perform data layout transformations or optimizations such as pipelining.

Declaratively specifying data layout, memory movement, and computation coordination
requirements results in a system with well-defined (and verifiable) semantics. Moreover, a
declarative approach provides opportunities for sophisticated optimizations, analyses, and tools.

12

Integrating Kanor and Harlan results in a unified, high-level, flexible tool suitable for efficiently
programming hybrid clusters, traditional (CPU-based) clusters, and GPUs on a single machine.
We illustrate the integration of Kanor and Harlan with an example: distributed Sparse Matrix
Vector multiplication over a hybrid cluster.

Developing Performance and Functionality Enhancements to the Global Arrays Toolkit
B. Palmer, Pacific Northwest National Laboratory

Mapping Molecular Dynamics Algorithmic Parallelism
T.P. Straatsma, D.G. Chavarría-Miranda, D.J. Kerbyson, N.R. Tallent, A. Vishnu, N. Zuljevic,
Pacific Northwest National Laboratory

Molecular Dynamics (MD) simulations enable the study of the structure, dynamics and
thermodynamics of chemical and biochemical systems. Parallel implementations of MD
algorithms are communication-intensive and are further characterized by the need for frequent
synchronization and global operations. Parallel implementation strategies are being redesigned
to more effectively map the levels of algorithmic parallelism to the hierarchical hardware
architectures of high-performance computers.

A Hybrid Declarative/Imperative Approach for Irregular Applications
Jeremiah Willcock and Andrew Lumsdaine, Indiana University

Graph and other highly irregular applications is an important problem domain for exascale
systems. However, programming such applications with high performance is difficult, even with
specialized programming and execution models such as Active Pebbles or ParalleX. To mitigate
this problem, we propose a hybrid declarative/imperative approach to specifying graph and
related algorithms to execute on parallel computers. The model has some similarities to the
semiring linear algebra approach used by Combinatorial BLAS, but is generalized further to a
variant of relational algebra with explicit support for cyclic dependencies and explicit ordering of
processing. We show work-in-progress on specifying and efficiently implementing such a model
in the form of a domain-specific language.

Productive Programming Models for Exascale
Attendee List

Name Institution

1 Almasi, George IBM Corporation

2 Balaji, Pavan Argonne National Laboratory

3 Calandra, Henri TOTAL E&P Research & Technology USA, LLC

4 Carmean, Doug Intel Corporation

5 Chamberlain, Brad Cray, Inc.

6 Chavarría-Miranda, Daniel G. Pacific Northwest National Laboratory

7 Church, Jessica Pacific Northwest National Laboratory

8 Deumens, Erik University of Florida

9 Diniz, Pedro Univeristy of California

10 Dubois, Jérôme Commissariat à l’Energie Atomique

11 Emad, Nahid University of Versailles

12 Garland, Michael NVIDIA

13 Gaudiot, Jean-Luc University of California

14 Germann, Timothy C. Los Alamos National Laboratory

15 Gropp, William D. University of Illinois at Urbana-Champaign

16 Hammond, Jeff Argonne National Laboratory

17 Harrison, Robert Oak Ridge National Laboratory

18 Iancu, Costin C. Lawrence Berkeley National Laboratory

19 Johnson, Fred Science Applications International Corporation

20 Johnson, Gary Computational Science Solutions, LLC

21 Kale, Laxmikant (Sanjay) University of Illinois at Urbana-Champaign

22 Kang, Seung-Hwa Pacific Northwest National Laboratory

23 Karavanic, Karen L. Portland State University

24 Kerbyson, Darren Pacific Northwest National Laboratory

25 Kim, Jeongnim Oak Ridge National Laboratory

26 Kowalski, Karol Pacific Northwest National Laboratory

27 Krishnamoorthy, Sriram Pacific Northwest National Laboratory

28 Levesque, John Cray, Inc.

29 Liao, Terrence TOTAL E&P Research & Technology USA, LLC

30 Lumsdaine, Andrew Indiana University

31 Moffett, Monica Pacific Northwest National Laboratory

32 Petiton, Serge University of Lille

33 Purkayastha, Avi National Renewable Energy Laboratory

34 Roche, Kenny Pacific Northwest National Laboratory

35 Sadayappan, P. Saday Ohio State University

36 Sanders, Beverly University of Florida

37 Sterling, Thomas Indiana University

38 Straatsma, TP Pacific Northwest National Laboratory

39 Tang, William M. Princeton University

40 Vishnu, Abhinav Pacific Northwest National Laboratory

41 Willcock, Jeremiah Indiana University

42 Wolfe, Michael The Portland Group, Inc. (PGI)

43 Yan, Yonghong University of Houston

