
A Global Arrays Based Approach to  
Automated Data Management for Parallel 

Quantum Monte Carlo Applications* 
 

Qingpeng Niu1, James Dinan2, 
Sravya Tirukkovalur1, Lubos Mitas3, 

Lucas Wagner4, and P. Sadayappan1 

 

1 The Ohio State University 
2 Argonne National Laboratory 

3 North Carolina State University 
4 Univ. Illinois, Urbana-Champaign 

A Tale of How GA Helped out an MPI Code 

*Supported by NSF and DOEu 



Motivation 

•  Quantum Monte Carlo codes like QWalk and 
QMCPACK use a large spline interpolation table 
that is replicated in each MPI process 

•  QMC simulation may be constrained by memory 
size to hold the interpolation table 
–  Cannot run if table size is larger than physical memory 
–  May limit number of MPI processes per node if 

Tablesize*NumCores exceeds physical memory 

Solution: GA based implementation of the Einspline 
library, along with a Global Read-only Cache, to 
eliminate problem, with no change to QWalk app 



Overview of QMC 

•  A quantum state of the system is a point in 3N 
dimensional space 

•  The wave function ψ is a mapping from 3N 
dimensional space to complexes 

•  The goal of QMC simulation is to solve for the 
wave function. 

•  Ensemble data 
1.  The initial state of the quantum mechanical system 

under simulation 
2.  Four dimensional <NX, NY, NZ, NSPO> Read-Only 

Spline interpolation table 



•  Numerical representation of functions 
using interpolating cubic B-splines 
•  Used in QMCPACK and QWalk 

•  Ensemble data is 4-d 
•  Spatial dimensions: Nx x Ny x Nz 
•  Single-particle orbital: Nspo 

•  Core routines: 
1.  Create/allocate spline interpolation table 
2.  Initialize entries of interpolation table 
3.  Evaluate function (value, gradient, Hessian) 

•  Evaluation requires a 4x4x4xNspo “minicube” of entries  
from the spline table that surround the given point 

•  Very random access to table entries as QMC simulation 
proceeds, but significant temporal/spatial locality occurs for 
some evaluations (Value/Gradient) but not for others 
(Value/Gradient/Hessians) 

Einspline Library 



PGAS: Global Arrays 

•  PGAS: Partitioned Global 
Address Space 

•  GA provides a logical 
global address view for 
arrays whose elements are 
physically distributed 

•  GA_Get and GA_Put 
operations copy arbitrary 
multi-dimensional block of 
data from/to Global Array 
to/from local buffers  



PGAS Ensemble Data Management 

•  Extended the Einspline  
library with a GV-Coefficients 
data management layer 

•  GV-Coefficients utilizes the 
aggregate memory among 
cluster nodes by using Global Arrays 

•  A GRC (Global Read-only Cache) layer enables 
transparent caching to exploit access locality 

•  No change required of the QMC application – only 
changes are within Einspline library 



PGAS Ensemble Data Management 

•  Distribution of GV-Coefficients Data using a Global Array 
–  Since access pattern is always a <4,4,4,Nspo> contiguous subset 

from the <Nx,Ny,Nz,Nspo> table, the Nspo dimension of Global Array 
is made contiguous 

•  Replication of GV Coefficients Data 
–  Nodes in the system are partitioned into GA sub-groups large 

enough to be able to hold the spline table in a GA 
  

 



Exploiting Locality of QMC Walkers 

•  GA Read-Only Cache (GRC) Runtime System 
–  Provide automatic caching of non-local data from GA 
–  Units of cache are <bx,by,bz,Nspo> “bricks” of contiguous 

data from the GA holding entire table 
–  LRU replacement policy for cache bricks 
–  The <4,4,4,Nspo> table entries needed for each spline 

evaluation map to one or more bricks; bricks not locally 
presentvare retrieved using GA_get calls and held in 
cache 

•  Main optimization question: What is the best choice 
for bx,by,bz? 

 
 



Exploiting Locality of QMC Walkers 

•  <Nx,Ny,NSPO> = <11,11,32> 
•  <bx,by> = <4,3> 
•  Bricks are color coded 
•  Bricks needed: 

# -> 2 (orange and red) 
% -> 2 (olive green and red) 
& -> 4 (blue,black,purple,yellow) 
#,% -> 3 (orange, red, olive) 

•  Choice of <bx,by> affects total communication overhead 
•  Probabilistic analysis of overhead can be used to select 

best choice for <bx,by>  
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Exploiting Locality of QMC Walkers 

•  For a single random <4,4,4, Nspo> minicube access, 
     Expected Data Transfer Volume = Expected_bricks*bx*by*bz*Nspo 
•  Brick size increase results in 

–  Decrease in average # bricks per minicube access, i.e. decrease in control 
and start-up overheads 

–  But an increase in data volume communicated 
–  System parameters (message startup cost, comm. bw) affect optimal choice 

•  Optimal brick size is also affected by reuse characteristics 

bx*by*bz Expected # Bricks  Expected volume of data transfer 
1x1x1 64 64xNSPO 
1x1x2 40 80xNSPO 
1x1x4 28 112xNSPO 
1x2x2 25 100xNSPO 
1x2x4 17.5 140xNSPO 
2x2x2 15.625 125xNSPO 



Exploiting Locality of QMC Walkers 

•  Reuse distance histograms for value/gradient (left) and 
value/gradient/Hessian (right) evaluations 

•  Value/gradient (VG) evaluations (left) exhibit strong locality 
•  A GRC with capacity of 32MB will eliminate more than 

80% of communication operations 
•  Value/gradient/Hessian (VGH) evaluations (right) do not 

exhibit much locality 
•  Not worth caching VGH accesses 



Analytical Model of Comm. Cost 

•  E(Tcomm): Expected comm. cost per minicube access 
•  Chit (hit cost) and Cmiss (miss cost) measured via profiling  
•  Phit: Probability of a cache hit for a brick (cumulative reuse 

distance analysis histogram) 
•  E(B): Expected number of bricks per minicube request. 



Experimental Evaluation 
Systems: 1) Blue Gene/P system and 2) Infiniband Cluster 

 Syste
m 

Memory 
per node 

CPU 
frequency 

Cores/
node 

Total 
nodes 

Cluster 12GB 850MHZ 8 160 
BG/P 2GB 2.67GHZ 4 40K 

Datasets: simulation of a lattice of 216 silicon atoms in 
equilibrium diamond structure 
•  Three variants corresponding to different spatial 

resolution 
–  Supercell: grid spacing of 0.2 Bohr  
–  Supercell-heavy: grid spacing of 0.1 Bohr 
–  Supercell-lite: grid spacing of 0.25 Bohr 

Dataset Mx My Mz K Tables Size(G
B) 

Supercell-lite 45 45 45 432 2 1.173 
Supercell 55 55 55 432 2 2.142 

Supercell-heavy 106 106 106 432 2 15.334 



GRC Modeling: VG on Cluster 
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•  Good match between model prediction and measurements 
•  Best brick size is 1x1x2 
•  Caching significantly lowers average comm. cost per minicube 



GRC Modeling: VGH on Cluster 
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•  Good match between model prediction and measurements 
•  But even the best brick size delivers lower performance than 

non-cached GA => should not cache VGH accesses 
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GRC Modeling: VG on BG/P 
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•  Good match between model prediction and measurements 
•  Best brick size is again 1x1x2 
•  Caching significantly lowers average comm. cost per minicube 
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GRC Modeling: VGH on BG/P 
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•  Good match between model prediction and measurements 
•  Again, the best brick size delivers lower performance than 

non-cached GA => should not cache Hessian accesses 
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Experimental Results: BG/P 

•  Supercell-lite dataset: Spline table requires 1.17GB 
–  Each node has 2GB memory 
–  In original QWalk, one node can hold 1 replica and use 1 core 
–  In GV-Coeff+GVR QWalk, 2 cores share one copy of the data 

•  Almost 2 times faster than original QWalk using the same 
number of nodes 
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Experimental Results: Cluster 

•  Supercell dataset: Spline table size is 4.8GB 
–  Each cluster node has 12GB memory 
–  In original QWalk, one node can hold 2 replicas and use 2 cores 
–  In GV-Coeff+GVR Qwalk, all 8 cores shared one replica 

•  More than 2 times faster than original QWalk using the 
same number of nodes  
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Summary 

•  The QWalk QMC application faces memory limitations 
when using very large spline interpolation tables 

•  Developed a GA-Einspline library - GA-based 
implementation of the Einspline library to overcome 
memory limitations of original Einspline library 

•  Developed analytical performance model using 
empirical characterization of locality characteristics, to 
finds best brick sizes for the Global Read-only Cache 

•  GA-Einspline enables enhanced performance and/or 
ability to run larger systems for QWalk 


