
A Global Arrays Based Approach to
Automated Data Management for Parallel

Quantum Monte Carlo Applications*

Qingpeng Niu1, James Dinan2,
Sravya Tirukkovalur1, Lubos Mitas3,

Lucas Wagner4, and P. Sadayappan1

1 The Ohio State University
2 Argonne National Laboratory

3 North Carolina State University
4 Univ. Illinois, Urbana-Champaign

A Tale of How GA Helped out an MPI Code

*Supported by NSF and DOEu

Motivation

•  Quantum Monte Carlo codes like QWalk and
QMCPACK use a large spline interpolation table
that is replicated in each MPI process

•  QMC simulation may be constrained by memory
size to hold the interpolation table
–  Cannot run if table size is larger than physical memory
–  May limit number of MPI processes per node if

Tablesize*NumCores exceeds physical memory

Solution: GA based implementation of the Einspline
library, along with a Global Read-only Cache, to
eliminate problem, with no change to QWalk app

Overview of QMC

•  A quantum state of the system is a point in 3N
dimensional space

•  The wave function ψ is a mapping from 3N
dimensional space to complexes

•  The goal of QMC simulation is to solve for the
wave function.

•  Ensemble data
1.  The initial state of the quantum mechanical system

under simulation
2.  Four dimensional <NX, NY, NZ, NSPO> Read-Only

Spline interpolation table

•  Numerical representation of functions
using interpolating cubic B-splines
•  Used in QMCPACK and QWalk

•  Ensemble data is 4-d
•  Spatial dimensions: Nx x Ny x Nz
•  Single-particle orbital: Nspo

•  Core routines:
1.  Create/allocate spline interpolation table
2.  Initialize entries of interpolation table
3.  Evaluate function (value, gradient, Hessian)

•  Evaluation requires a 4x4x4xNspo “minicube” of entries
from the spline table that surround the given point

•  Very random access to table entries as QMC simulation
proceeds, but significant temporal/spatial locality occurs for
some evaluations (Value/Gradient) but not for others
(Value/Gradient/Hessians)

Einspline Library

PGAS: Global Arrays

•  PGAS: Partitioned Global
Address Space

•  GA provides a logical
global address view for
arrays whose elements are
physically distributed

•  GA_Get and GA_Put
operations copy arbitrary
multi-dimensional block of
data from/to Global Array
to/from local buffers

PGAS Ensemble Data Management

•  Extended the Einspline
library with a GV-Coefficients
data management layer

•  GV-Coefficients utilizes the
aggregate memory among
cluster nodes by using Global Arrays

•  A GRC (Global Read-only Cache) layer enables
transparent caching to exploit access locality

•  No change required of the QMC application – only
changes are within Einspline library

PGAS Ensemble Data Management

•  Distribution of GV-Coefficients Data using a Global Array
–  Since access pattern is always a <4,4,4,Nspo> contiguous subset

from the <Nx,Ny,Nz,Nspo> table, the Nspo dimension of Global Array
is made contiguous

•  Replication of GV Coefficients Data
–  Nodes in the system are partitioned into GA sub-groups large

enough to be able to hold the spline table in a GA

Exploiting Locality of QMC Walkers

•  GA Read-Only Cache (GRC) Runtime System
–  Provide automatic caching of non-local data from GA
–  Units of cache are <bx,by,bz,Nspo> “bricks” of contiguous

data from the GA holding entire table
–  LRU replacement policy for cache bricks
–  The <4,4,4,Nspo> table entries needed for each spline

evaluation map to one or more bricks; bricks not locally
presentvare retrieved using GA_get calls and held in
cache

•  Main optimization question: What is the best choice
for bx,by,bz?

Exploiting Locality of QMC Walkers

•  <Nx,Ny,NSPO> = <11,11,32>
•  <bx,by> = <4,3>
•  Bricks are color coded
•  Bricks needed:

-> 2 (orange and red)
% -> 2 (olive green and red)
& -> 4 (blue,black,purple,yellow)
#,% -> 3 (orange, red, olive)

•  Choice of <bx,by> affects total communication overhead
•  Probabilistic analysis of overhead can be used to select

best choice for <bx,by>

& & & &

& & & &

& & & &

& & & &

% % % %

% % % %

% % % %

% % % %

Exploiting Locality of QMC Walkers

•  For a single random <4,4,4, Nspo> minicube access,
 Expected Data Transfer Volume = Expected_bricks*bx*by*bz*Nspo
•  Brick size increase results in

–  Decrease in average # bricks per minicube access, i.e. decrease in control
and start-up overheads

–  But an increase in data volume communicated
–  System parameters (message startup cost, comm. bw) affect optimal choice

•  Optimal brick size is also affected by reuse characteristics

bx*by*bz Expected # Bricks Expected volume of data transfer
1x1x1 64 64xNSPO
1x1x2 40 80xNSPO
1x1x4 28 112xNSPO
1x2x2 25 100xNSPO
1x2x4 17.5 140xNSPO
2x2x2 15.625 125xNSPO

Exploiting Locality of QMC Walkers

•  Reuse distance histograms for value/gradient (left) and
value/gradient/Hessian (right) evaluations

•  Value/gradient (VG) evaluations (left) exhibit strong locality
•  A GRC with capacity of 32MB will eliminate more than

80% of communication operations
•  Value/gradient/Hessian (VGH) evaluations (right) do not

exhibit much locality
•  Not worth caching VGH accesses

Analytical Model of Comm. Cost

•  E(Tcomm): Expected comm. cost per minicube access
•  Chit (hit cost) and Cmiss (miss cost) measured via profiling
•  Phit: Probability of a cache hit for a brick (cumulative reuse

distance analysis histogram)
•  E(B): Expected number of bricks per minicube request.

Experimental Evaluation
Systems: 1) Blue Gene/P system and 2) Infiniband Cluster

 Syste
m

Memory
per node

CPU
frequency

Cores/
node

Total
nodes

Cluster 12GB 850MHZ 8 160
BG/P 2GB 2.67GHZ 4 40K

Datasets: simulation of a lattice of 216 silicon atoms in
equilibrium diamond structure
•  Three variants corresponding to different spatial

resolution
–  Supercell: grid spacing of 0.2 Bohr
–  Supercell-heavy: grid spacing of 0.1 Bohr
–  Supercell-lite: grid spacing of 0.25 Bohr

Dataset Mx My Mz K Tables Size(G
B)

Supercell-lite 45 45 45 432 2 1.173
Supercell 55 55 55 432 2 2.142

Supercell-heavy 106 106 106 432 2 15.334

GRC Modeling: VG on Cluster

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 20 40 60 80 100

C
o
m

m
u
n
ic

a
tio

n
 C

o
st

 (
n
s)

Cache Size(MB)

Predicted, 1x1x1
Actual, 1x1x1

Predicted, 2x2x2
Actual, 2x2x2

Predicted, 1x1x2
Actual, 1x1x2

Predicted, 1x1x4

Actual, 1x1x4
Predicted, 1x2x2

Actual, 1x2x2
Predicted, 1x2x4

Actual, 1x2x4
No GRC

•  Good match between model prediction and measurements
•  Best brick size is 1x1x2
•  Caching significantly lowers average comm. cost per minicube

GRC Modeling: VGH on Cluster

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 20 40 60 80 100

C
o
m

m
u
n
ic

a
tio

n
 C

o
st

 (
n
s)

Cache Size(MB)

Predicted, 1x1x1
Actual, 1x1x1

Predicted, 2x2x2
Actual, 2x2x2

Predicted, 1x1x2
Actual, 1x1x2

Predicted, 1x1x4

Actual, 1x1x4
Predicted, 1x2x2

Actual, 1x2x2
Predicted, 1x2x4

Actual, 1x2x4
No GRC

•  Good match between model prediction and measurements
•  But even the best brick size delivers lower performance than

non-cached GA => should not cache VGH accesses

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 50 100 150 200 250

C
o
m

m
u
n
ic

a
tio

n
 C

o
st

 (
n
s)

Cache Size(MB)

GRC Modeling: VG on BG/P

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 20 40 60 80 100

C
o
m

m
u
n
ic

a
tio

n
 C

o
st

 (
n
s)

Cache Size(MB)

Predicted, 1x1x1
Actual, 1x1x1

Predicted, 2x2x2
Actual, 2x2x2

Predicted, 1x1x2
Actual, 1x1x2

Predicted, 1x1x4

Actual, 1x1x4
Predicted, 1x2x2

Actual, 1x2x2
Predicted, 1x2x4

Actual, 1x2x4
No GRC

•  Good match between model prediction and measurements
•  Best brick size is again 1x1x2
•  Caching significantly lowers average comm. cost per minicube

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 20 40 60 80 100

C
o

m
m

u
n

ic
a

tio
n

 C
o

st
 (

n
s)

Cache Size(MB)

GRC Modeling: VGH on BG/P

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 20 40 60 80 100

C
o
m

m
u
n
ic

a
tio

n
 C

o
st

 (
n
s)

Cache Size(MB)

Predicted, 1x1x1
Actual, 1x1x1

Predicted, 2x2x2
Actual, 2x2x2

Predicted, 1x1x2
Actual, 1x1x2

Predicted, 1x1x4

Actual, 1x1x4
Predicted, 1x2x2

Actual, 1x2x2
Predicted, 1x2x4

Actual, 1x2x4
No GRC

•  Good match between model prediction and measurements
•  Again, the best brick size delivers lower performance than

non-cached GA => should not cache Hessian accesses

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 50 100 150 200 250

C
o

m
m

u
n

ic
a

tio
n

 C
o

st
 (

n
s)

Cache Size(MB)

Experimental Results: BG/P

•  Supercell-lite dataset: Spline table requires 1.17GB
–  Each node has 2GB memory
–  In original QWalk, one node can hold 1 replica and use 1 core
–  In GV-Coeff+GVR QWalk, 2 cores share one copy of the data

•  Almost 2 times faster than original QWalk using the same
number of nodes

 0

 1000

 2000

 3000

 4000

 5000

 256 512 1024

T
o

ta
l V

M
C

 T
im

e
 (

se
c)

Number of Nodes

Original QWalk
GV-Coeff+GRC QWalk

Experimental Results: Cluster

•  Supercell dataset: Spline table size is 4.8GB
–  Each cluster node has 12GB memory
–  In original QWalk, one node can hold 2 replicas and use 2 cores
–  In GV-Coeff+GVR Qwalk, all 8 cores shared one replica

•  More than 2 times faster than original QWalk using the
same number of nodes

 0

 500

 1000

 1500

 2000

 2500

 3000

 2 4 8 16 32

T
o

ta
l V

M
C

 T
im

e
 (

se
c)

Number of Nodes

Original QWalk
GV-Coeff+GRC QWalk

Summary

•  The QWalk QMC application faces memory limitations
when using very large spline interpolation tables

•  Developed a GA-Einspline library - GA-based
implementation of the Einspline library to overcome
memory limitations of original Einspline library

•  Developed analytical performance model using
empirical characterization of locality characteristics, to
finds best brick sizes for the Global Read-only Cache

•  GA-Einspline enables enhanced performance and/or
ability to run larger systems for QWalk

