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Programming model 
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Programming environment  for 
exascale 

• Portability 

• Productivity 

• Performance 

• Energy efficiency 

• Resilience 
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• Abstraction 

• Modularity 

• Tools  
– But no magic 

• Separation of concerns 
– Domain specialist 

– Parallel programming expert 



We usually think about layers of abstraction 

 

Another dimension: 

What do we know and when do we know it? 

When do we forget what we already knew? 
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More productive environment 
• Remember knowledge about algorithms and data 

structures 
• Use new information when it becomes available 



Example:  Super Instruction 
Architecture 

Computational chemistry—coupled cluster 
methods 

– Dominated by tensor algebra using very large, dense multi-dimensional arrays 

– Irregular access patterns 

– Very complex algorithms--need abstraction at level that supports 
experimentation with algorithms 

ACES III  
– www.qtp.ufl.edu/ACES 

 



Program characteristics 

• Typical data requirements  

– CCSD for 100 electrons 

• 2-10 ~80 GB arrays  

• One ~800GB array  
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Need to be distributed.  
Some stored on disk 



Program characteristics 

• Typical data requirements  
– CCSD for 100 electrons 

• 2-10 ~80 GB arrays    

• One ~800GB array  

 

 
 

• Complex tradeoffs between  
– Computation 

– Memory usage 

– Communication 

 
 

 

Not stored, 
(re)compute as needed 



One term from the coupled cluster model* 

* Baumgartner, et al.   Proceedings of the IEEE, 93:2 pp276-292. 



Super Instruction Architecture 
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Super Instruction Assembly Language (SIAL) 

interpreter 

communication layer (MPI) 

(single node) computational 
kernels 

Super Instructions 

Super Instruction Processor  (SIP) 

I/O 

distributed and 
disk-backed 
arrays 



Super Instructions and Super Numbers  

• Traditional programming languages 
– unit of data:  floating point number 
– operations:  combine floating point numbers 
– but operations and data must be aggregated for good performance 

• SIAL 
– unit of data:  block (super number) of floating point numbers 
– operations:  super instructions 

• Single node computational kernels 
– No communication 
– CPU or GPU 

• Written in a general purpose programming language, i.e. Fortran, C/C++ or 
CUDA 

• Some built-in, some implemented by domain experts 
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Algorithms in SIAL are expressed in terms of 
blocks and super instructions  



Example:  tensor contraction term 
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Mathematical 
expression 



Example:  blocked version 

 

 

18 

F






TVR ijijij

),,,(),,,(),,,( JISLTSLNMVJINMR
ij

LS L S
ij



 








 



•Divide each dimension into segments 
•M,N,L,S,I,J  index segments of size seg 
•Each block R(M,N,I,J) is a 4-index  array of seg4  
elements 



Example:  contraction super instruction 
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built-in super instruction 

SIAL programmer 
thinks about 

algorithm like this 



Parallel Implementation in SIAL 
pardo M,N,I,J 

 tmpsum(M,N,I,J) = 0.0 

 do L 

  do S 

   get T(L,S,I,J) 

   execute compute_integrals V(M,N,L,S) 

   tmp(M,N,I,J) = V(M,N,L,S) * T(L,S,I,J) 

   tmpsum(M,N,I,J) += tmp(M,N,I,J) 

  enddo S 

 enddo L 

 put R(M,N,I,J) = tmpsum(M,N,I,J) 

endpardo M,N,I,J 

sip_barrier 
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Variable 
declarations 
and 
instantiation 
not shown 
 
T and R are 
distributed 
arrays 

 

And writes 
code like 

this 



Implementation in SIAL 
pardo M,N,I,J 

 tmpsum(M,N,I,J) = 0.0 

 do L 

  do S 

   get T(L,S,I,J) 

   execute compute_integrals V(M,N,L,S) 

   tmp(M,N,I,J) = V(M,N,L,S) * T(L,S,I,J) 

   tmpsum(M,N,I,J) += tmp(M,N,I,J) 

  enddo S 

 enddo L 

 put R(M,N,I,J) = tmpsum(M,N,I,J) 

endpardo M,N,I,J 

sip_barrier 
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Divide iteration 
space among 
available workers 
and execute in 

parallel. 
 

M,N,I,J,L,S count 
segments, have 
been defined 
earlier with 
symbolic ranges.   



Implementation in SIAL 

pardo M,N,I,J 

 tmpsum(M,N,I,J) = 0.0 

 do L 

  do S 

   get T(L,S,I,J) 

   execute compute_integrals V(M,N,L,S) 

   tmp(M,N,I,J) = V(M,N,L,S) * T(L,S,I,J) 

   tmpsum(M,N,I,J) += tmp(M,N,I,J) 

  enddo S 

 enddo L 

 put R(M,N,I,J) = tmpsum(M,N,I,J) 

endpardo M,N,I,J 

sip_barrier 
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Request block of 
distributed array  

Communication 
is asynchronous 



Implementation in SIAL 
pardo M,N,I,J 

 tmpsum(M,N,I,J) = 0.0 

 do L 

  do S 

   get T(L,S,I,J) 

   execute compute_integrals V(M,N,L,S) 

   tmp(M,N,I,J) = V(M,N,L,S) * T(L,S,I,J) 

   tmpsum(M,N,I,J) += tmp(M,N,I,J) 

  enddo S 

 enddo L 

 put R(M,N,I,J) = tmpsum(M,N,I,J) 

endpardo M,N,I,J 

sip_barrier 
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Block 
contraction. 
   

Right hand side is 
implicit future—
waits for T(L,S,I,J) if 
necessary 



Super Instructions 

• Single node computational kernels 

– No communication 

– CPU or GPU 

• Written in a general purpose programming 
language, i.e. Fortran, C/C++ or CUDA 

• Some built-in, some implemented by domain 
experts 
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“We need to structure our programs so that compilers can do what they are good at.”  Bill Gropp  

“Compilers are good at local analysis.”  Michael Wolfe   



Runtime System:  SIP 

• Organization 
– master 
– set of worker nodes  

• distributed array blocks managed by workers 

– set of I/O nodes that handle served (disk-backed 
arrays) 

– workers loop over op table containing SIAL byte code 
• byte code instruction corresponds to statement in SIAL 
• program structure available to runtime in convenient form 
• can profile instructions with minimal overhead 

– periodically checks for MPI messages 
– Implemented and tuned by parallel programing expert 
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Data Management 

• Handles distributed data layout 
– data access very irregular 

– currently no attempts to exploit locality or block 
ownership 

 

• Memory management at individual nodes “knows” 
about blocks and segment size for run (analysis 
during initialization) 

 

• Blocks are automatically cached. 
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Benefits of the SIA with Current 
Systems 

• Programmer productivity 
– Right abstraction 

• Excellent parallel performance 
– Right granularity 

• Easy to port, easy to tune* 
– Port SIP, SIAL programs still run 
 

 
 
 
 

 
*except Blue Gene 
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• Enables interesting code analyses 
– Predict memory usage during program initialization 

– Auto-generated performance models  using inputs and timing info for 
super instructions 
– Predict run time and efficiency 

– Resource allocation and scheduling 



Analysis:  Performance Models 

• SIPMap (work in progress) 

– Tool to builds performance models from SIAL 
source 

– Predicts  

• overall runtime for given number of iterations 

• wait time for blocks, time at barriers, etc. 

– Parameterized with  

• Results from small reference run on target machine 

• Microbenchmarks for disk and network behavior 
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Analysis:  Predict memory usage 

• Performed as part of SIAL program initialization 

 

• Estimates memory usage before expensive run 

– Determines feasibility of computation on system 

– Used to set up memory configuration 

• local memory (block stacks) 

• distributed data layout 
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Support for Tuning 

• Low overhead but useful profiling info 
– Blocking time per pardo loop 
– Time for each superinstruction 
– …Porting and tuning 

• Tuning the SIP runtime 
– Easy with most systems 

• Tuning the super instructions that implement 
computational kernels 
– Can proceed independently from tuning the SIP 
– Can be done incrementally 
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The SIA at Exascale???? 
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Domain 
specific 

language  
Virtual 

Machine 

Intranode 
Parallelism 

Energy 
Efficiency 

Fault 
tolerance 



Abstract Data Type Specific Language 

• Exploit constraints 
– Data structures 
– Control flow—iteration space of most loops can be determined 

before loop execution  
– Tools 

• Approach applicable to other domains 
– Some domain support, e.g. type system, easily adapted to other 

domains. 

• Incremental generalization 
– Enhanced data structures, e.g. 

• Better support for high ranks 
• Better support for symmetry 
• Support for sparse tensors 
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Virtual Machine 

• The SIP is a VM 

• VM combined with code analysis (including 
performance model) can transparently 
manage most aspects of the computation 

– Work scheduling  

– Data layout 

• Block-orientation gives right granularity for 
inter-node parallelism  
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Intranode Parallelism 

• Map workers to heterogeneous multicore 
nodes 

• Task parallelism in runtime 

• Data parallel implementations of super 
instructions (GPU, SIMD) 

– Tensor contractions 

– Molecular integrals 
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Energy Efficiency 

• Super instructions encapsulate energy 
intensive parts of computation 

• Leverage performance modeling tools to 
model energy. 
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Fault Tolerance 

• Fault tolerance crucial at exascale 

• Required capabilities 

– Restart a partially completely computation 

• Already exists in SIA 

• Calculations naturally decompose into steps—live 
arrays written to disk. 

• Restart at step boundaries 

– Gracefully degrade when components fail. 

 

 
36 



Transparent Fault Tolerance 

• Two pronged approach 
– Replicate blocks 

• Similar to prior work using GA and NWChem 
• But in the SIA, this can be transparent to the SIAL 

programmer because the SIP controls data placement and 
task scheduling 

– Blocks self-monitor updates 
• Constrained control-flow allows which arrays are changed by 

a task and kind of update to be inferred in advance 
• Updates can be made idempotent 
• Missing update simply rescheduled performance, accurate 

failure detection not necessary.   
• Speculation for performance? 
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Conclusion 

• SIA  

– Separation of concerns via DSL and runtime 

– Key concept: programming with blocks 

– Uses right language for each task 

• Ready for enhancements needed for exascale 

• Approach feasible, even  with a small team 
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