
Super Instruction

Architecture for Exascale

Software Engineering

Erik Deumens, Beverly A

Sanders, Victor Lotrich, Sean

McDowell, Nakul Jindal

Programming model

• Should help us with
– Portability

– Productivity

– Performance

2

Programming model

• Should help us with
– Portability

– Productivity

– Performance

3

• Abstraction

• Modularity

Programming model environment

• Portability

• Productivity

• Performance

4

• Abstraction

• Modularity

• Tools
– But no magic

Programming environment for
exascale

• Portability

• Productivity

• Performance

• Energy efficiency

• Resilience

5

• Abstraction

• Modularity

• Tools
– But no magic

• Separation of concerns
– Domain specialist

– Parallel programming expert

We usually think about layers of abstraction

Another dimension:

What do we know and when do we know it?

When do we forget what we already knew?

6

7

8

9

More productive environment
• Remember knowledge about algorithms and data

structures
• Use new information when it becomes available

Example: Super Instruction
Architecture

Computational chemistry—coupled cluster
methods

– Dominated by tensor algebra using very large, dense multi-dimensional arrays

– Irregular access patterns

– Very complex algorithms--need abstraction at level that supports
experimentation with algorithms

ACES III
– www.qtp.ufl.edu/ACES

Program characteristics

• Typical data requirements

– CCSD for 100 electrons

• 2-10 ~80 GB arrays

• One ~800GB array

Program characteristics

• Typical data requirements

– CCSD for 100 electrons

• 2-10 ~80 GB arrays

• One ~800GB array

Need to be distributed.
Some stored on disk

Program characteristics

• Typical data requirements
– CCSD for 100 electrons

• 2-10 ~80 GB arrays

• One ~800GB array

• Complex tradeoffs between
– Computation

– Memory usage

– Communication

Not stored,
(re)compute as needed

One term from the coupled cluster model*

* Baumgartner, et al. Proceedings of the IEEE, 93:2 pp276-292.

Super Instruction Architecture

15

Super Instruction Assembly Language (SIAL)

interpreter

communication layer (MPI)

(single node) computational
kernels

Super Instructions

Super Instruction Processor (SIP)

I/O

distributed and
disk-backed
arrays

Super Instructions and Super Numbers

• Traditional programming languages
– unit of data: floating point number
– operations: combine floating point numbers
– but operations and data must be aggregated for good performance

• SIAL
– unit of data: block (super number) of floating point numbers
– operations: super instructions

• Single node computational kernels
– No communication
– CPU or GPU

• Written in a general purpose programming language, i.e. Fortran, C/C++ or
CUDA

• Some built-in, some implemented by domain experts

16

Algorithms in SIAL are expressed in terms of
blocks and super instructions

Example: tensor contraction term

17

F










TVR ijij

Mathematical
expression

Example: blocked version

18

F






TVR ijijij

),,,(),,,(),,,(JISLTSLNMVJINMR
ij

LS L S
ij



 








 



•Divide each dimension into segments
•M,N,L,S,I,J index segments of size seg
•Each block R(M,N,I,J) is a 4-index array of seg4
elements

Example: contraction super instruction

19

F






TVR ijijij

),,,(),,,(),,,(JISLTSLNMVJINMR
ij

LS L S
ij



 








 




LS

ij
JISLTSLNMVJINMR),,,(*),,,(),,,(



built-in super instruction

SIAL programmer
thinks about

algorithm like this

Parallel Implementation in SIAL
pardo M,N,I,J

 tmpsum(M,N,I,J) = 0.0

 do L

 do S

 get T(L,S,I,J)

 execute compute_integrals V(M,N,L,S)

 tmp(M,N,I,J) = V(M,N,L,S) * T(L,S,I,J)

 tmpsum(M,N,I,J) += tmp(M,N,I,J)

 enddo S

 enddo L

 put R(M,N,I,J) = tmpsum(M,N,I,J)

endpardo M,N,I,J

sip_barrier

 20

Variable
declarations
and
instantiation
not shown

T and R are
distributed
arrays

And writes
code like

this

Implementation in SIAL
pardo M,N,I,J

 tmpsum(M,N,I,J) = 0.0

 do L

 do S

 get T(L,S,I,J)

 execute compute_integrals V(M,N,L,S)

 tmp(M,N,I,J) = V(M,N,L,S) * T(L,S,I,J)

 tmpsum(M,N,I,J) += tmp(M,N,I,J)

 enddo S

 enddo L

 put R(M,N,I,J) = tmpsum(M,N,I,J)

endpardo M,N,I,J

sip_barrier

21

Divide iteration
space among
available workers
and execute in

parallel.

M,N,I,J,L,S count
segments, have
been defined
earlier with
symbolic ranges.

Implementation in SIAL

pardo M,N,I,J

 tmpsum(M,N,I,J) = 0.0

 do L

 do S

 get T(L,S,I,J)

 execute compute_integrals V(M,N,L,S)

 tmp(M,N,I,J) = V(M,N,L,S) * T(L,S,I,J)

 tmpsum(M,N,I,J) += tmp(M,N,I,J)

 enddo S

 enddo L

 put R(M,N,I,J) = tmpsum(M,N,I,J)

endpardo M,N,I,J

sip_barrier

22

Request block of
distributed array

Communication
is asynchronous

Implementation in SIAL
pardo M,N,I,J

 tmpsum(M,N,I,J) = 0.0

 do L

 do S

 get T(L,S,I,J)

 execute compute_integrals V(M,N,L,S)

 tmp(M,N,I,J) = V(M,N,L,S) * T(L,S,I,J)

 tmpsum(M,N,I,J) += tmp(M,N,I,J)

 enddo S

 enddo L

 put R(M,N,I,J) = tmpsum(M,N,I,J)

endpardo M,N,I,J

sip_barrier

23

Block
contraction.

Right hand side is
implicit future—
waits for T(L,S,I,J) if
necessary

Super Instructions

• Single node computational kernels

– No communication

– CPU or GPU

• Written in a general purpose programming
language, i.e. Fortran, C/C++ or CUDA

• Some built-in, some implemented by domain
experts

 24

“We need to structure our programs so that compilers can do what they are good at.” Bill Gropp

“Compilers are good at local analysis.” Michael Wolfe

Runtime System: SIP

• Organization
– master
– set of worker nodes

• distributed array blocks managed by workers

– set of I/O nodes that handle served (disk-backed
arrays)

– workers loop over op table containing SIAL byte code
• byte code instruction corresponds to statement in SIAL
• program structure available to runtime in convenient form
• can profile instructions with minimal overhead

– periodically checks for MPI messages
– Implemented and tuned by parallel programing expert

25

Data Management

• Handles distributed data layout
– data access very irregular

– currently no attempts to exploit locality or block
ownership

• Memory management at individual nodes “knows”
about blocks and segment size for run (analysis
during initialization)

• Blocks are automatically cached.

26

Benefits of the SIA with Current
Systems

• Programmer productivity
– Right abstraction

• Excellent parallel performance
– Right granularity

• Easy to port, easy to tune*
– Port SIP, SIAL programs still run

*except Blue Gene

27

• Enables interesting code analyses
– Predict memory usage during program initialization

– Auto-generated performance models using inputs and timing info for
super instructions
– Predict run time and efficiency

– Resource allocation and scheduling

Analysis: Performance Models

• SIPMap (work in progress)

– Tool to builds performance models from SIAL
source

– Predicts

• overall runtime for given number of iterations

• wait time for blocks, time at barriers, etc.

– Parameterized with

• Results from small reference run on target machine

• Microbenchmarks for disk and network behavior

28

Analysis: Predict memory usage

• Performed as part of SIAL program initialization

• Estimates memory usage before expensive run

– Determines feasibility of computation on system

– Used to set up memory configuration

• local memory (block stacks)

• distributed data layout

29

Support for Tuning

• Low overhead but useful profiling info
– Blocking time per pardo loop
– Time for each superinstruction
– …Porting and tuning

• Tuning the SIP runtime
– Easy with most systems

• Tuning the super instructions that implement
computational kernels
– Can proceed independently from tuning the SIP
– Can be done incrementally

30

The SIA at Exascale????

31

Domain
specific

language
Virtual

Machine

Intranode
Parallelism

Energy
Efficiency

Fault
tolerance

Abstract Data Type Specific Language

• Exploit constraints
– Data structures
– Control flow—iteration space of most loops can be determined

before loop execution
– Tools

• Approach applicable to other domains
– Some domain support, e.g. type system, easily adapted to other

domains.

• Incremental generalization
– Enhanced data structures, e.g.

• Better support for high ranks
• Better support for symmetry
• Support for sparse tensors

32

Virtual Machine

• The SIP is a VM

• VM combined with code analysis (including
performance model) can transparently
manage most aspects of the computation

– Work scheduling

– Data layout

• Block-orientation gives right granularity for
inter-node parallelism

33

Intranode Parallelism

• Map workers to heterogeneous multicore
nodes

• Task parallelism in runtime

• Data parallel implementations of super
instructions (GPU, SIMD)

– Tensor contractions

– Molecular integrals

34

Energy Efficiency

• Super instructions encapsulate energy
intensive parts of computation

• Leverage performance modeling tools to
model energy.

35

Fault Tolerance

• Fault tolerance crucial at exascale

• Required capabilities

– Restart a partially completely computation

• Already exists in SIA

• Calculations naturally decompose into steps—live
arrays written to disk.

• Restart at step boundaries

– Gracefully degrade when components fail.

36

Transparent Fault Tolerance

• Two pronged approach
– Replicate blocks

• Similar to prior work using GA and NWChem
• But in the SIA, this can be transparent to the SIAL

programmer because the SIP controls data placement and
task scheduling

– Blocks self-monitor updates
• Constrained control-flow allows which arrays are changed by

a task and kind of update to be inferred in advance
• Updates can be made idempotent
• Missing update simply rescheduled performance, accurate

failure detection not necessary.
• Speculation for performance?

37

Conclusion

• SIA

– Separation of concerns via DSL and runtime

– Key concept: programming with blocks

– Uses right language for each task

• Ready for enhancements needed for exascale

• Approach feasible, even with a small team

38

