
Avalanche: A Flow-Graph
Framework for Simplifying the

Use of Active Messages

Jeremiah Willcock, Ryan Newton, Andrew Lumsdaine
Indiana University

Large-Scale Computing
 Not just for PDEs anymore
 Many problems are driven

by data
 Graph abstraction

important for data driven
problems

Graph Algorithms: An Esoteric Niche?

 Who used a graph algorithm today?
 Did anyone use this esoteric app:

Why Active Messages for Graphs?
 Highly asynchronous
 Communication implicit on receiver

 Allows compound actions with one message
 Generalization of PGAS remote atomic operations
 Fixed set of remote operations is not efficient

 Single-source shortest paths typically requires:
 Fetch-and-min to update distance (round-trip)
 Fetch-and-add to find new location in queue (round-trip)
 Put to write new vertex to queue (one-way)

 Single one-way active message can trigger all of these actions
 More complicated updates cannot be done with fetch-and-X

 Many systems moving toward active messages

What’s Old is New Again

Active
Messages

Dataflow
programming

Avalanche

Active Messages
 Created by von Eicken

et al, for Split-C (1992)
 Messages sent explicitly
 Receivers register

handlers but are not
involved with individual
messages

 Messages typically
asynchronous for higher
throughput

Send

Message
handler

Reply

Reply
handler

Tim
e

Process 1 Process 2

Active Pebbles
 Programming model
 Active messages (pebbles)
 Fine-grained addressing (targets)

 Execution model
 Flexible message coalescing
 Message reductions
 Active routing
 Termination detection

 Features are synergistic
 AM++ is our implementation of Active Pebbles model

Programming Model
 Program with natural granularity
 No need to artificially coarsen

object granularity
 Transparent addressing
 Static and dynamic
 Local and remote

 Bulk, anonymous handling of
messages and targets

 Epoch model
 Enforce message delivery
 Controlled relaxed consistency

Execution Model
 Message coalescing
 Amortize latency

 Message reduction
 Eliminate redundant

computation
 Distributed computation

into network
 Active routing
 Exploit physical topology

 Termination detection
 Handlers send messages
 Detect quiescence

Active Message Breadth-First Search
struct vertex_handler:
 color_map& color; queue& new_queue;
 handle(vertex v):
 if color(v) is white:
 color(v) black
 append v to new_queue

register_handler vertex_handler(color, new_queue)

while any rank’s queue is not empty:
 new_queue empty
 inside active message epoch:
 for vertex v in queue:
 for vertex w in neighbors(v):
 tell owner(w) to run vertex_handler(w)
 queue new_queue

Avalanche
 Prototype distributed data flow graph framework on

top of Active Pebbles
 Graph structure usually specified at compile-time
 Data redistribution explicit
 Distribution itself user-defined

 Written in C++11 to simplify code
 Paper to appear in Workshop on

Functional High-Performance
Computing at ICFP

Overall Approach
 Application kernels written as data flow graphs
 Specified using C++ function calls

 Flow graph is run SPMD-style
 All nodes replicated on all ranks
 Execution interleaved within a single thread on each rank

 Other threading models possible

 Communication is explicit (redistribute nodes)
 User-defined data distributions and message semantics

 Goal is high performance on huge numbers of tiny
messages, and nodes are assumed to perform little
computation per input

0 1 2 3 Rank

Redistribute node

Communication
(Active Pebbles)

Local function
calls (possibly inlined)

Avalanche Programming Model

Graph Nodes
 Main abstraction is single-input, single-output node
 Special cases for beginning and end of pipeline

 A node is a C++ object with a defined interface
 Combinators build nodes from functions, other nodes
 Graph structure set at compile-time and/or run-time

 Each node has metafunction to compute output type
from input type, allowing polymorphism

Node Compute
output type Bind

continuation
Bound
node

Pipeline Node Composition
 Each node has a function that represents passing an

input element to that node
 These functions are composed to form pipelines,

broadcasts, etc.
 Function bodies known statically, allowing inlining

From successor Adding n2
Adding n1

How is a Node Implemented?
 C++ concept (generic interface, not virtual functions)
 Requires type functions and polymorphic functions

Forward: Backward:

Node Compute
output type Bind

continuation
Bound
node

Type Information Flow

CPS Function Node
 Converts user function object into flow graph node
 Function objects can have state
 Cannot be C++11 lambda function (language limitation)

 Function can return zero or more outputs per input
 Function takes continuation as extra parameter and calls it

on each output
 Name is from continuation-passing style used for

invocation of user function
 struct my_func {
 template <typename> using cps_result_type = …;
 template <typename Next> // From next node in pipeline
 void operator()(Next& next, Arg arg)
 {… next(…); …}};

Function Nodes
 Wrapper (function node) for single-output functions
 Does not require explicit specification of return type
 Allows use of lambda functions
 function_node([](int x) {return x + 1;})

 Wrapper for filters, easy to write others
 filter([=](int x) {return x > y;})

 Special variants for beginning, end of pipeline

Pipeline Combinator
 Pass output from one node as input of another
 Produces new, combined node

 Composes input and output types
 Second node can be polymorphic based on first node’s

output type
 Body of one node can be inlined into previous node
 Reduces overhead from composing local nodes

Redistribute Node
 Uses Active Pebbles to move data
 AP execution model features available

 E.g., routing and message reductions
 Message configuration object used to control these
 Only node type that does communication (all others are

purely local operations)
 Destination given by user-defined data distribution

Message Configuration

Combined
message

type
object

Message semantics
(from algorithm)
• Data type
• Handler
• Semantics

(idempotency, etc.)

Configuration
(from user)
• Coalescing impl.
• Coalescing factor
• Routing
• Reductions to apply

Other Node Types
 Loop
 Allows cyclic flow graphs, still set up at compile time

 Subgraph
 Nest one graph inside another

 Uses separate Active Pebbles message epoch
 Barrier synchronization when subgraph is finished

 Takes dummy input, produces number as output
 Broadcast/merge
 Send single message multiple places, combine results

Fork/Join Combinator
 Farm out one object to

several computations
 Combine results
 Built from other nodes
 All except broadcast/merge

are CPS function nodes
 Takes advantage of inlining

of adjacent graph nodes

Dynamic Flow Graphs
 Avalanche uses compile-time combinators
 Less flexible but allows higher performance

 Add flexibility of run-time graphs:
 dynamic_sender<T> and dynamic_receiver<T>
 add_edge(…) function to link them

 Small performance penalty for using these
 Extra std::function invocation per object sent

 Currently only single-sender, single-receiver
 Can add dynamic_broadcast and such later

Threading Model
 Possible models:
 One MPI rank per core (currently used)
 AM++ shared-memory transport (work in progress)
 Node type that launches successor as task for each input
 Fork-join but in multiple threads

 Spread work of subpart of graph across threads

 Avalanche not tied to single-threaded model
 Core parts are thread-safe (no shared data)
 Fork-join tag matcher and ID assigner are not

 But could easily be made to be

Breadth-First Search

queue q1, q2;
q1.push(source);
while (!q1.empty()) {
 parfor (v : q1) {
 parfor (w : neighbors(v)) {
 atomic {
 if (color[w] == white) {
 color[w] = black;
 q2.push(w);
 }
 }
 }
 }
 swap(q1, q2);
 q2.clear();
}

Breadth-First Search Code
 run(trans,
 (send_constant(continue_msg{}) |
 loop(
 subgraph(
 (iterate_container(q1) |
 cps_function_node(
 bfs_get_outgoing_edges_t<…>{g, local}) |
 redistribute(owner_gen, msg_gen) |
 filter([&](vertex_descriptor v) {
 auto key = get(local, v);
 if (get(color, key) == one_bit_white) {
 put(color, key, one_bit_not_white);
 return true;} else return false;
 }) |
 final_function_node([&](vertex_descriptor v, …)
 {q2.push_back(v);})),
 trans) |
 filter([](uintmax_t val) {return val != 0;}) |
 function_node(
 [&](…) {q1.swap(q2); q2.clear(); return continue_msg{};})) |
 eat()));

Avalanche Performance on BFS

ANL Challenger (Blue Gene/P),
1 PPN, single-threaded
DOE Contract DE-AC02-06CH11357

Comparison to Related Approaches
 Structured Dagger
 Also for coordination of active messages
 Asynchronous applications written in sequential style

 Plus syntax for parallel spawn/sync

 Charj
 Simplifies use of active messages in Charm++
 Addresses mostly orthogonal issues
 Provides serialization generation, sending only parts of

data when possible
 YML
 Data flow graph framework using RPC
 Higher-level than Avalanche or Active Pebbles

Integration with Other Frameworks
 Flow graph model not tied to Active Pebbles
 Efficient use on fine-grained applications relies on it

 Could be targeted at (for example):
 ParalleX/HPX
 Charm++
 Global Futures
 GASNet (modulo message handler limitations)

 Get same inlining benefits plus
performance/dynamism/… from underlying
framework
 For coarser-grained applications, not inlining adjacent

nodes leads to simpler implementation

Future Work
 Higher-level, declarative approaches based on

Avalanche and similar ideas
 Datalog generalizations for graph algorithms

 Compiler assistance for Avalanche
 Performance limited by compiler issues (extra pointer

dereferences, mostly)
 Higher-level models hit this problem even more
 Compilation is slow
 Explicit compiler or ROSE-type framework

	Avalanche: A Flow-Graph Framework for Simplifying the Use of Active Messages
	Large-Scale Computing
	Graph Algorithms: An Esoteric Niche?
	Why Active Messages for Graphs?
	What’s Old is New Again
	Active Messages
	Active Pebbles
	Programming Model
	Execution Model
	Active Message Breadth-First Search
	Avalanche
	Overall Approach
	Avalanche Programming Model
	Graph Nodes
	Pipeline Node Composition
	How is a Node Implemented?
	Type Information Flow
	CPS Function Node
	Function Nodes
	Pipeline Combinator
	Redistribute Node
	Message Configuration
	Other Node Types
	Fork/Join Combinator
	Dynamic Flow Graphs
	Threading Model
	Breadth-First Search
	Breadth-First Search Code
	Avalanche Performance on BFS
	Comparison to Related Approaches
	Integration with Other Frameworks
	Future Work

