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Large-Scale Computing 
 Not just for PDEs anymore 
 Many problems are driven 

by data 
 Graph abstraction 

important for data driven 
problems 

 



Graph Algorithms: An Esoteric Niche? 

 Who used a graph algorithm today? 
 Did anyone use this esoteric app: 



Why Active Messages for Graphs? 
 Highly asynchronous 
 Communication implicit on receiver 

 Allows compound actions with one message 
 Generalization of PGAS remote atomic operations 
 Fixed set of remote operations is not efficient 

 Single-source shortest paths typically requires: 
 Fetch-and-min to update distance (round-trip) 
 Fetch-and-add to find new location in queue (round-trip) 
 Put to write new vertex to queue (one-way) 

 Single one-way active message can trigger all of these actions 
 More complicated updates cannot be done with fetch-and-X 

 Many systems moving toward active messages 



What’s Old is New Again 

Active 
Messages 

Dataflow 
programming 

Avalanche 



Active Messages 
 Created by von Eicken 

et al, for Split-C (1992) 
 Messages sent explicitly 
 Receivers register 

handlers but are not 
involved with individual 
messages 

 Messages typically 
asynchronous for higher 
throughput 
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Active Pebbles 
 Programming model 
 Active messages (pebbles) 
 Fine-grained addressing (targets) 

 Execution model 
 Flexible message coalescing 
 Message reductions 
 Active routing 
 Termination detection 
 

 Features are synergistic 
 AM++ is our implementation of Active Pebbles model 



Programming Model 
 Program with natural granularity 
 No need to artificially coarsen 

object granularity 
 Transparent addressing 
 Static and dynamic 
 Local and remote 

 Bulk, anonymous handling of 
messages and targets 

 Epoch model 
 Enforce message delivery 
 Controlled relaxed consistency 



Execution Model 
 Message coalescing 
 Amortize latency 

 Message reduction 
 Eliminate redundant 

computation 
 Distributed computation 

into network 
 Active routing 
 Exploit physical topology 

 Termination detection 
 Handlers send messages 
 Detect quiescence 



Active Message Breadth-First Search 
struct vertex_handler: 
  color_map& color; queue& new_queue; 
  handle(vertex v): 
    if color(v) is white: 
      color(v)  black 
      append v to new_queue 

 

 
 
 
 
 
 

 
register_handler vertex_handler(color, new_queue) 
 

while any rank’s queue is not empty: 
  new_queue  empty 
  inside active message epoch: 
    for vertex v in queue: 
      for vertex w in neighbors(v): 
        tell owner(w) to run vertex_handler(w) 
  queue  new_queue 



Avalanche 
 Prototype distributed data flow graph framework on 

top of Active Pebbles 
 Graph structure usually specified at compile-time 
 Data redistribution explicit 
 Distribution itself user-defined 

 Written in C++11 to simplify code 
 Paper to appear in Workshop on 

Functional High-Performance  
Computing at ICFP 



Overall Approach 
 Application kernels written as data flow graphs 
 Specified using C++ function calls 

 Flow graph is run SPMD-style 
 All nodes replicated on all ranks 
 Execution interleaved within a single thread on each rank 

 Other threading models possible 

 Communication is explicit (redistribute nodes) 
 User-defined data distributions and message semantics 

 Goal is high performance on huge numbers of tiny 
messages, and nodes are assumed to perform little 
computation per input 
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Graph Nodes 
 Main abstraction is single-input, single-output node 
 Special cases for beginning and end of pipeline 

 A node is a C++ object with a defined interface 
 Combinators build nodes from functions, other nodes 
 Graph structure set at compile-time and/or run-time 

 Each node has metafunction to compute output type 
from input type, allowing polymorphism 
 

Node Compute 
output type   Bind 

continuation 
Bound 
node 



Pipeline Node Composition 
 Each node has a function that represents passing an 

input element to that node 
 These functions are composed to form pipelines, 

broadcasts, etc. 
 Function bodies known statically, allowing inlining 

From successor Adding n2 
Adding n1 

 



How is a Node Implemented? 
 C++ concept (generic interface, not virtual functions) 
 Requires type functions and polymorphic functions 
 
 
 
 
 

Forward: Backward: 

Node Compute 
output type   Bind 

continuation 
Bound 
node 



Type Information Flow 



CPS Function Node 
 Converts user function object into flow graph node 
 Function objects can have state 
 Cannot be C++11 lambda function (language limitation) 

 Function can return zero or more outputs per input 
 Function takes continuation as extra parameter and calls it 

on each output 
 Name is from continuation-passing style used for 

invocation of user function 
 struct my_func { 
    template <typename> using cps_result_type = …; 
    template <typename Next> // From next node in pipeline 
    void operator()(Next& next, Arg arg) 
      {… next(…); …}}; 



Function Nodes 
 Wrapper (function node) for single-output functions 
 Does not require explicit specification of return type 
 Allows use of lambda functions 
 function_node([](int x) {return x + 1;}) 

 Wrapper for filters, easy to write others 
 filter([=](int x) {return x > y;}) 

 Special variants for beginning, end of pipeline 



Pipeline Combinator 
 Pass output from one node as input of another 
 Produces new, combined node 
 
 

 Composes input and output types 
 Second node can be polymorphic based on first node’s 

output type 
 Body of one node can be inlined into previous node 
 Reduces overhead from composing local nodes 



Redistribute Node 
 Uses Active Pebbles to move data 
 AP execution model features available 

 E.g., routing and message reductions 
 Message configuration object used to control these 
 Only node type that does communication (all others are 

purely local operations) 
 Destination given by user-defined data distribution 



Message Configuration 

Combined 
message 

type 
object 

Message semantics 
(from algorithm) 
• Data type 
• Handler 
• Semantics 

(idempotency, etc.) 

Configuration 
(from user) 
• Coalescing impl. 
• Coalescing factor 
• Routing 
• Reductions to apply 



Other Node Types 
 Loop 
 Allows cyclic flow graphs, still set up at compile time 

 Subgraph 
 Nest one graph inside another 

 Uses separate Active Pebbles message epoch 
 Barrier synchronization when subgraph is finished 

 Takes dummy input, produces number as output 
 Broadcast/merge 
 Send single message multiple places, combine results 



Fork/Join Combinator 
 Farm out one object to 

several computations 
 Combine results 
 Built from other nodes 
 All except broadcast/merge 

are CPS function nodes 
 Takes advantage of inlining 

of adjacent graph nodes 



Dynamic Flow Graphs 
 Avalanche uses compile-time combinators 
 Less flexible but allows higher performance 

 Add flexibility of run-time graphs: 
 dynamic_sender<T> and dynamic_receiver<T> 
 add_edge(…) function to link them 

 
 Small performance penalty for using these 
 Extra std::function invocation per object sent 

 Currently only single-sender, single-receiver 
 Can add dynamic_broadcast and such later 



Threading Model 
 Possible models: 
 One MPI rank per core (currently used) 
 AM++ shared-memory transport (work in progress) 
 Node type that launches successor as task for each input 
 Fork-join but in multiple threads 

 Spread work of subpart of graph across threads 

 Avalanche not tied to single-threaded model 
 Core parts are thread-safe (no shared data) 
 Fork-join tag matcher and ID assigner are not 

 But could easily be made to be 



Breadth-First Search 

queue q1, q2; 
q1.push(source); 
while (!q1.empty()) { 
  parfor (v : q1) { 
    parfor (w : neighbors(v)) { 
      atomic { 
        if (color[w] == white) { 
          color[w] = black; 
          q2.push(w); 
        } 
      } 
    } 
  } 
  swap(q1, q2); 
  q2.clear(); 
} 



Breadth-First Search Code   
   run(trans, 
        (send_constant(continue_msg{}) | 
         loop( 
           subgraph( 
            (iterate_container(q1) | 
             cps_function_node( 
               bfs_get_outgoing_edges_t<…>{g, local}) | 
             redistribute(owner_gen, msg_gen) | 
             filter([&](vertex_descriptor v) { 
                      auto key = get(local, v); 
                      if (get(color, key) == one_bit_white) { 
                        put(color, key, one_bit_not_white); 
                        return true;} else return false; 
                    }) | 
             final_function_node([&](vertex_descriptor v, …) 
                                   {q2.push_back(v);})), 
            trans) | 
           filter([](uintmax_t val) {return val != 0;}) | 
           function_node( 
             [&](…) {q1.swap(q2); q2.clear(); return continue_msg{};})) | 
         eat())); 



Avalanche Performance on BFS 

ANL Challenger (Blue Gene/P), 
1 PPN, single-threaded 
DOE Contract DE-AC02-06CH11357 



Comparison to Related Approaches 
 Structured Dagger 
 Also for coordination of active messages 
 Asynchronous applications written in sequential style 

 Plus syntax for parallel spawn/sync 

 Charj 
 Simplifies use of active messages in Charm++ 
 Addresses mostly orthogonal issues 
 Provides serialization generation, sending only parts of 

data when possible 
 YML 
 Data flow graph framework using RPC 
 Higher-level than Avalanche or Active Pebbles 



Integration with Other Frameworks 
 Flow graph model not tied to Active Pebbles 
 Efficient use on fine-grained applications relies on it 

 Could be targeted at (for example): 
 ParalleX/HPX 
 Charm++ 
 Global Futures 
 GASNet (modulo message handler limitations) 

 Get same inlining benefits plus 
performance/dynamism/… from underlying 
framework 
 For coarser-grained applications, not inlining adjacent 

nodes leads to simpler implementation 



Future Work 
 Higher-level, declarative approaches based on 

Avalanche and similar ideas 
 Datalog generalizations for graph algorithms 

 Compiler assistance for Avalanche 
 Performance limited by compiler issues (extra pointer 

dereferences, mostly) 
 Higher-level models hit this problem even more 
 Compilation is slow 
 Explicit compiler or ROSE-type framework 
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