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About US

UH HPCTools Group

— Led by Barbara Chapman, member of OpenMP ARB

— 4 senior and ~18 graduate students (most Ph.D)

— http://www.cs.uh.edu/~hpctools

Major Research and Development

— OpenMP (NSF, DoE), OpenUH compiler

— PGAS: OpenSHMEM (DoD), CAF (TOTAL)

— OpenACC test suite and compiler (NVIDIA)

— Heterogeneous and Embedded related (TI, SRC, Freescale)
Myself, research assistant professor, OpenMP subcommittee member
— Use OpenMP, but more on implementing OpenMP and compilers
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Background and Agenda

* Experience and thoughts on the node-level shared memory
programming model for exascale

— NSF HECURA project: eXtreme OpenMP: A Programming Model for
Productive High End Computing

— DoE pmodel project: Center for Programming Models for Scalable
Parallel Computing

— Graduate students from compiler and parallel programming class

* Motivation: Implicit vs Explicit

 REX Highlights
— Abstract Machine Model, Compiler, Runtime
— Some preliminary results
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Programmers’ Expectations for
a programming model

* Will take care of her algorithms, but for me:

e Correct and deterministic performance

— If she uses correctly, she wants to get expected performance
* Manageable control
— Full control is good, but with complexity (MPIl_Put/Get), ?

* Compiler, runtime and performance tools
& — HPC with Matlab, need a magic compiler



Inter-node

All about communication, and domain decomposition

— Library approach do the work: MPI, GA, and OpenSHMEM
— Realize the SPMD model on cluster

MPI

— Well balanced between programmability and performance
— Legacy codes

Language approach (CAF and UPC)

— Some become implicit =2 Less/lose control
Chapel and X10 — compiler/runtime



Talking about shared memory programming

* Access data anywhere, and sometimes implies uniformly
— NUMA/NUCA effects

* Data consistency taken care by cache-coherence
— False-sharing

* Barrier causes threads to sync
— Barriers are global and heavy

* When using locks, be careful of deadlock
— But it is your fault
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Small “Mistakes™, Big Consequences

« GenlDLEST |
— Scientific simulation code

— Solves incompressible Navier Stokes
and energy equations

— MPI and OpenMP versions
« Platform

— SGI Altix 3700 (NUMA)
— 512 Itanium 2 Processors

 OpenMP code slower than MPI

OpenMP vers

MPI version

In the OpenMP version, a single procedure is responsible for 20% of
the total time and is 9 times slower than the MPI version . Its loops are up to 27 times
slower in OpenMP than MPT.
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A Solution: Privatization

NMP Optimized Version




False-sharing at Work

'Somp parallel do
'Somp schedule (sta

default (shared) private (i) &
tic)

/

do i = 1, m
X(i,j,k) = X(i,j,k—l) + X(i,j—l,k)*scale
end do
'Somp end parallel do
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Disciplined Shared Memory Programming

* Engineer or formulate performance tuning practices

* A programming model with explicit and full control vs

— Currently live in the mind

implicit
— Why not we make more explicit at the beginning
— It is a tradeoff on what to be explicit/implicit

PACT 2011 Best Paper: DeNovo: Rethinking the Memory Hierarchy for Disciplined
Parallelism, Byn Choi (UIUC), etc
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REX Highlights

 To provide to programmers a manageable control of node architectures
through an abstract machine model

* Explicit locality and analyzable data operations to enable aggressive
machine-aware compilation and runtime adaptation

* Abstract Machine Model (AMM)
— Hierarchical Place Trees (HPT)

* Explicit Locality and Data Operations
— Analyzable by compilers
 Compiler cost model and machine aware optimizations
— Static mapping, and data placement
* Runtime
I, — Dynamic refinement and adaptation
|



REX AMM: Hierarchical Place Trees

* Place denotes storage, and links as edges o
— Cache, SDRAM, device memory :

 PE as worker threads
* Different HPT deployments

— Trade-off between locality and load-balance g

3
3
N

Memory

3
\
N

1
2
3

3
||

Memory
N

3
A
N

NUMA node 1 — NUMA not




How HPT works (1)

* Datain a child place are subset of its parent
— May not be coherent
— Optimization should reduce movement upwardly

e Data are placed at specific place by
— Programmers, static placement (compiler) and at runtime
— If undecided, data can always placed at the root

 Work unit (wunit), parallel region, tasks, etc are created
with a target place (implict or explicit)
— Assume to process data residing on that place
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How HPT works (2)

* A worker executes tasks of ancestor places EE==

lllll PL4

PL5

— w0 executes tasks from pl3, pl1, plO

w1

w2

* Tasks from a place can be executed by all of the workers

of the place subtree
— Affinity in scheduling

— If Tpll is scheduled by w2 or w3, data has to be transferred to

the top level (pl0) and then down to either pl5 or pl6
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HPT preliminary results
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* 8x2 and 8x8 configs expect better performance
— True for SOR2D, A, B, C and CG A on Xeon SMP

— True for SOR2D C, CG A, and B, and Crypt Cand D on T2

» Better performance for Locality-sensitivity apps
— Deployment to be consistent with memory architecture

1

Hierarchical Place Trees: A Portable Abstraction for Task Parallelism and Data
Movement, Yonghong Yan, Jisheng Zhao, Yi Guo and Vivek Sarkar, LCPC 2010
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The HPT’s Role

PO-0 PO-1 PO-2 PO-3

* Programmers:
— A portable representation of memory hierarchy as HPT
— Explicit data and work unit binding
 Compilers: machine aware compilation
— Static data placement and binding of wunit to placesza
— Cost model guided
 Runtime: adaptivity and refinement of static decision

— Locality-aware scheduling
— Cost-guided data/task migration
— Helper threads

1 :




Programming Interface

* Explicit locality and data operations
— rex_malloc(size_t, place_t)

— rex_[async]memcpy(void * dst, void * src, size_t, place_t dst_pl,
place_t src_pl)

— rex_[async]memset

— rex_mmap and rem_msync

— #pragma rex parallel [at<pl> | atplof<ptr>] [team ... ]
— #pragma rex task [at<pl> | atplof <ptr>] [team ... ]

* All compiler recognizable for optimizations

1
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Programming Interface

 Parallel Patterns

— Worksharing, async tasks, data/event driven, data movement
operations as schedulable work unit

* Synchronizations

— #pragma rex barrier: only apply to the enclosing parallel
region, not global

1 :



Realistic on compilers

* Most effective compiler optimizations: Vectorization
— Cannot play magic

* Compiler needs more information
— Microarchitectures = micro-opt
— Machine architectures > macro-opt

* The lack of macro compilation

— Need language support



REX Compiler

* High-level parallelism aware compilation
— Frontend, unlimited resources for idea execution

 Machine aware compilation based on HPT
— Static mapping and data placement on to HPT

* Cost model to guide the two compilations
— Simulation and search
— Database for runtime refinement and adaptation



Modeling False Sharing at Compile-time

Cost models

« (Cache access simulation

» Cost estimation of memory access taking Computational

Cache model

. resource cost Cache cost
into account of shared cache Operation cost
Issue cost TLB cost
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REX Runtime

ocality-aware scheduling and data affinity with HPT
Lightweight and localized synchronization

Hybridization
— Handling remote and async operations
Runtime adaptation

— Task-level auto-tunning

— Helper thread for dynamic compilation

w0

PL2

PL4

PL5

PL6

w1

w2

w3
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Subteams of Threads?

Intra-team
barrier

Global
barrier

Thread Threads Thread Thread
subteam 1 subteam 2 subteamn 3

(j=0; j< ProcessingNum; j++)
#pragma omp for schedule(dynamic)
subteam(2:omp_get_num_threads()-1)
for (k=0; k<M; k++) {
ProcessData(); // data processing
} I/ subteam-internal barrier

Thread Subteam: finer grained resout

management

« Overlap computation and communicat
(MPI)

« Concurrent worksharing regions

« Additional control of locality of
computations and data

. Hancllle Igopsl with Iittlle work

I I I I
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Conclusion

Programming model vs lib/languages
— Model not changed, lib/lang changed

Some ideas are inspired from PGAS/APGAS languages

Revolutionary in compiler/runtime/tools

— Evolutionary in programming interfaces

HPC education for new generation graduate






