REX: REthinking the “X” in the “MPI+X”
for Exascale Nodes

Productive Programming Models for Exascale
Portland, OR, August 14-15, 2012

Yonghong Yan
http.//www.cs.uh.edu/~hpctools
University of Houston

http://www.cs.uh.edu/~hpct

About US

UH HPCTools Group

— Led by Barbara Chapman, member of OpenMP ARB

— 4 senior and ~18 graduate students (most Ph.D)

— http://www.cs.uh.edu/~hpctools

Major Research and Development

— OpenMP (NSF, DoE), OpenUH compiler

— PGAS: OpenSHMEM (DoD), CAF (TOTAL)

— OpenACC test suite and compiler (NVIDIA)

— Heterogeneous and Embedded related (TI, SRC, Freescale)
Myself, research assistant professor, OpenMP subcommittee member
— Use OpenMP, but more on implementing OpenMP and compilers

1

Background and Agenda

* Experience and thoughts on the node-level shared memory
programming model for exascale

— NSF HECURA project: eXtreme OpenMP: A Programming Model for
Productive High End Computing

— DoE pmodel project: Center for Programming Models for Scalable
Parallel Computing

— Graduate students from compiler and parallel programming class

* Motivation: Implicit vs Explicit

 REX Highlights
— Abstract Machine Model, Compiler, Runtime
— Some preliminary results

1

Programmers’ Expectations for
a programming model

* Will take care of her algorithms, but for me:

e Correct and deterministic performance

— If she uses correctly, she wants to get expected performance
* Manageable control
— Full control is good, but with complexity (MPIl_Put/Get), ?

* Compiler, runtime and performance tools
& — HPC with Matlab, need a magic compiler

Inter-node

All about communication, and domain decomposition

— Library approach do the work: MPI, GA, and OpenSHMEM
— Realize the SPMD model on cluster

MPI

— Well balanced between programmability and performance
— Legacy codes

Language approach (CAF and UPC)

— Some become implicit =2 Less/lose control
Chapel and X10 — compiler/runtime

Talking about shared memory programming

* Access data anywhere, and sometimes implies uniformly
— NUMA/NUCA effects

* Data consistency taken care by cache-coherence
— False-sharing

* Barrier causes threads to sync
— Barriers are global and heavy

* When using locks, be careful of deadlock
— But it is your fault

1

Small “Mistakes™, Big Consequences

« GenlDLEST |
— Scientific simulation code

— Solves incompressible Navier Stokes
and energy equations

— MPI and OpenMP versions
« Platform

— SGI Altix 3700 (NUMA)
— 512 Itanium 2 Processors

 OpenMP code slower than MPI

OpenMP vers

MPI version

In the OpenMP version, a single procedure is responsible for 20% of
the total time and is 9 times slower than the MPI version . Its loops are up to 27 times
slower in OpenMP than MPT.

1

A Solution: Privatization

NMP Optimized Version

False-sharing at Work

'Somp parallel do
'Somp schedule (sta

default (shared) private (i) &
tic)

/

do i = 1, m
X(i,j,k) = X(i,j,k—l) + X(i,j—l,k)*scale
end do
'Somp end parallel do
700
Thread O Thread 1
//M = 75,000 CPU 0 CPU 1
500 -

Cache Line

\:ﬁ

400
- %
200

Cache

h Cache Line
h 4
[[[1

N

Cache

Performance (Mf op/s)

o
V] 10 20

moJ%>/ A;::;;;?“‘~—* Nl I

<

30 40 50 60

Memory

Number of threads

[I'L.H_I

For a higher value of M, the
program scales better

Disciplined Shared Memory Programming

* Engineer or formulate performance tuning practices

* A programming model with explicit and full control vs

— Currently live in the mind

implicit
— Why not we make more explicit at the beginning
— It is a tradeoff on what to be explicit/implicit

PACT 2011 Best Paper: DeNovo: Rethinking the Memory Hierarchy for Disciplined
Parallelism, Byn Choi (UIUC), etc

11

REX Highlights

 To provide to programmers a manageable control of node architectures
through an abstract machine model

* Explicit locality and analyzable data operations to enable aggressive
machine-aware compilation and runtime adaptation

* Abstract Machine Model (AMM)
— Hierarchical Place Trees (HPT)

* Explicit Locality and Data Operations
— Analyzable by compilers
 Compiler cost model and machine aware optimizations
— Static mapping, and data placement
* Runtime
I, — Dynamic refinement and adaptation
|

REX AMM: Hierarchical Place Trees

* Place denotes storage, and links as edges o
— Cache, SDRAM, device memory :

 PE as worker threads
* Different HPT deployments

— Trade-off between locality and load-balance g

3
3
N

Memory

3
\
N

1
2
3

3
||

Memory
N

3
A
N

NUMA node 1 — NUMA not

How HPT works (1)

* Datain a child place are subset of its parent
— May not be coherent
— Optimization should reduce movement upwardly

e Data are placed at specific place by
— Programmers, static placement (compiler) and at runtime
— If undecided, data can always placed at the root

 Work unit (wunit), parallel region, tasks, etc are created
with a target place (implict or explicit)
— Assume to process data residing on that place

1 :

How HPT works (2)

* A worker executes tasks of ancestor places EE==

lllll PL4

PL5

— w0 executes tasks from pl3, pl1, plO

w1

w2

* Tasks from a place can be executed by all of the workers

of the place subtree
— Affinity in scheduling

— If Tpll is scheduled by w2 or w3, data has to be transferred to

the top level (pl0) and then down to either pl5 or pl6

15

HPT preliminary results

Time (s)

Executime Time (s) on Niagara T2

SSSSSSS
aaaaaaa

SSSSSSS

1x

G4 8x8 B4x1
Configurations

Time (s)

Execution Time (s) on Xeon SMP

SSSSSSS

1x16 8x2 16x1
Configurations

* 8x2 and 8x8 configs expect better performance
— True for SOR2D, A, B, C and CG A on Xeon SMP

— True for SOR2D C, CG A, and B, and Crypt Cand D on T2

» Better performance for Locality-sensitivity apps
— Deployment to be consistent with memory architecture

1

Hierarchical Place Trees: A Portable Abstraction for Task Parallelism and Data
Movement, Yonghong Yan, Jisheng Zhao, Yi Guo and Vivek Sarkar, LCPC 2010

16

The HPT’s Role

PO-0 PO-1 PO-2 PO-3

* Programmers:
— A portable representation of memory hierarchy as HPT
— Explicit data and work unit binding
 Compilers: machine aware compilation
— Static data placement and binding of wunit to placesza
— Cost model guided
 Runtime: adaptivity and refinement of static decision

— Locality-aware scheduling
— Cost-guided data/task migration
— Helper threads

1 :

Programming Interface

* Explicit locality and data operations
— rex_malloc(size_t, place_t)

— rex_[async]memcpy(void * dst, void * src, size_t, place_t dst_pl,
place_t src_pl)

— rex_[async]memset

— rex_mmap and rem_msync

— #pragma rex parallel [at<pl> | atplof<ptr>] [team ...]
— #pragma rex task [at<pl> | atplof <ptr>] [team ...]

* All compiler recognizable for optimizations

1

18

Programming Interface

 Parallel Patterns

— Worksharing, async tasks, data/event driven, data movement
operations as schedulable work unit

* Synchronizations

— #pragma rex barrier: only apply to the enclosing parallel
region, not global

1 :

Realistic on compilers

* Most effective compiler optimizations: Vectorization
— Cannot play magic

* Compiler needs more information
— Microarchitectures = micro-opt
— Machine architectures > macro-opt

* The lack of macro compilation

— Need language support

REX Compiler

* High-level parallelism aware compilation
— Frontend, unlimited resources for idea execution

 Machine aware compilation based on HPT
— Static mapping and data placement on to HPT

* Cost model to guide the two compilations
— Simulation and search
— Database for runtime refinement and adaptation

Modeling False Sharing at Compile-time

Cost models

« (Cache access simulation

» Cost estimation of memory access taking Computational

Cache model

. resource cost Cache cost
into account of shared cache Operation cost
Issue cost TLB cost
_ T _T Mem_ref cost
f5_measured nfs _measured fs_modeled nfs _modeled Dependency
= T* latency cost

fs_measured J5_modeled Register spill

cost

FFT Heat Diffusion
, 50 - 30
~ R
' w 25
; 40 E
| 30 - & 20
> > 15
20 ¥ Actual = " Act
] E 10 4
) 10 - "Modeled @ | ® Mo
) Q
) (7]
5 0 - E 0 -
2 4 8 16 24 32 40 48 2 4 8 16 24 32 40 48
Number of Threads Number of Threads

[M. Tolubaeva, Y. Yan and B. Chapman. Compile-Time Detection of False Sharing via Loop Cost Modeling. 29
I HIPS'12 Workshop in conjunction with IPDPS'12

REX Runtime

ocality-aware scheduling and data affinity with HPT
Lightweight and localized synchronization

Hybridization
— Handling remote and async operations
Runtime adaptation

— Task-level auto-tunning

— Helper thread for dynamic compilation

w0

PL2

PL4

PL5

PL6

w1

w2

w3

23

Subteams of Threads?

Intra-team
barrier

Global
barrier

Thread Threads Thread Thread
subteam 1 subteam 2 subteamn 3

(j=0; j< ProcessingNum; j++)
#pragma omp for schedule(dynamic)
subteam(2:omp_get_num_threads()-1)
for (k=0; k<M; k++) {
ProcessData(); // data processing
} I/ subteam-internal barrier

Thread Subteam: finer grained resout

management

« Overlap computation and communicat
(MPI)

« Concurrent worksharing regions

« Additional control of locality of
computations and data

. Hancllle Igopsl with Iittlle work

I I I I

512 - BT-MZ Class B I Nested OpenMI|
256 | @O Subteam
B MPI+OpenMP

1 2 4 8 16 32 64 128 25
Number of CPUs

& Increases expressivity of single-level parallelism 24

Conclusion

Programming model vs lib/languages
— Model not changed, lib/lang changed

Some ideas are inspired from PGAS/APGAS languages

Revolutionary in compiler/runtime/tools

— Evolutionary in programming interfaces

HPC education for new generation graduate

