
Programming & Execution Models
for Exascale: Abundant Parallelism
in the Presence of Constrained
Resources

Daniel Chavarría-Miranda

High-Performance Computing
Pacific Northwest National Laboratory

Productive Programming Models for Exascale
(PPME)

Outline

☞ Motivation
" Execution Models
" Global Arrays (GA)
" Execution Model extensions to GA

" Global Futures

" Code Transformation for Legacy Apps
" Conclusion

2

Motivation/Exascale Challenges

" Challenges at exascale:
" Massive hardware component count

" Processing elements/cores
" Power & energy constraints

" Maybe not all hardware components can be lit up
simultaneously

" Reliability & resiliency
" Larger component counts, lower voltages

" Constrained memory bandwidth & capacity
" Major changes in intra-node architecture

" 1000’s of cores per node not unlikely
" Coherent shared memory between all of them?

" Today’s programming and execution models are not
prepared for such environments

3

Outline

" Motivation
☞ Execution Models
" Global Arrays (GA)
" Execution Model extensions to GA

" Global Futures

" Code Transformation for Legacy Apps
" Conclusion

4

Execution Models

" What is an execution model?
" Describes dynamic behavior of the running application across all

levels (from hardware to systems software to the application itself)
" Execution models can be characterized with four

attributes
" Concurrency, Memory, Locality, Synchronization

" Example execution models:
" Communicating Sequential Processes (CSP): used for MPI
" Multithreaded fork-join: used for OpenMP
" Thread-blocks in lockstep: used for CUDA

" How are they different from programming models?
" Programming models convey a static view used when developing

an application

5

Execution Models (cont.)

" Today’s most used execution model on HPC systems is
CSP
" As implemented by the MPI-compatible execution environments

on HPC systems
" Concurrency: fixed number of processes (p) created at startup
" Memory: private, per process memory space, processes interact

only via message passing
" Locality: runtime and OS can map private per process memory

with (almost) maximal locality, subject to available memory
" Synchronization: implicit pair-wise synchronization when

exchanging messages between processes, multi-process
synchronization via rich set of collectives

6
MPI barrier/collective

✓  Very successful, very effective model for
many applications on today’s systems

Execution Models (cont.)

7

" However, there are problems with the CSP model at
scale
" Processes can be delayed if their communication partners are

not ready
" Load imbalances (even small ones) can affect when processes

reach communication points, with stronger effects on collectives
" Fully private memory, while excellent for locality is somewhat

inflexible
" PGAS “relaxation” of CSP

" Concurrency: no major change
" Memory: private, per process memory space + remotely

accessible memory
" Locality: private memory space can be mapped with maximal

locality, remotely accessible space requires special treatment
" Synchronization: special constructs to synchronize remote

memory accesses
" Result: better asynchrony between processing entities, more

flexibility in global memory access (interactions)

Global Arrays – global-view distributed
dense arrays

" Global Arrays (GA) is a library-based partitioned global address
space (PGAS) programming model
" Focused on enabling global-view access to distributed dense arrays
" Developed over the past 20 years
" Used heavily in computational chemistry applications
" Petascale performance for production applications

" 1.39 PFLOPS NWChem coupled cluster calculation on ORNL’s
Jaguar

" SC’09 Gordon Bell finalist

8

Physically distributed data

Global Address Space

" GA focuses on providing one-sided access to
array slices in the global space
" GA_Put(), GA_Get(), GA_Acc() primitives

" Communication support is provided by the
Aggregate Remote Memory Copy Interface
(ARMCI) runtime
" Native ports over networks, as well as MPI port

Global Arrays – global-view distributed
dense arrays (cont.)

" GA uses the standard MPI-compatible Communicating
Sequential Processes (CSP) execution model
" GA processes correspond one-to-one to MPI ranks
" Fully interoperable with MPI can mix & match calls to both APIs

" Dense array slices in a global array are “owned” by the GA
processes (according to data distribution)
" Data is directly accessible via load/store to all GA processes on that

node
" Explore execution model alternatives within the GA context

9

Outline

" Motivation
" Execution Models
" Global Arrays (GA)
☞ Execution Model extensions to GA

" Global Futures

" Code Transformation for Legacy Apps
" Conclusion

10

Global Futures – moving computation to
data

" Global Arrays (GA) is heavily focused on enabling efficient PGAS
data movement
" Move data to and from processes, within a CSP model

" What about moving computation to the data?
" Similar to an Active Message, but directed to the location that owns a

particular piece of data
" i.e., execute foo(a, b, c) on_home(d(1:10, 2:200))
" Similar abstractions exist in other programming models (Charm++, X10,

Chapel, Active Pebbles, others)
" Advantages:

" Moving an activation record (or continuation) can be much faster than
moving a whole array slice

" Once the computation is in place, it can take full advantage of locality
" Challenges:

" Want to enable this in the context of GA
" Implies using one-sided computation activation on remote locations
" The main process should not be involved

" Explore alternative integration of multithreaded models 11

12

g_
a(

1:
50

, 1
:1

00
)

g_a(51:100, 1:100)

p0 p1
pr

oc
es

s

pr
oc

es
s

call foo(a, b) on_home(g_a(51, 51))

fu
tu

re
 th

re
ad

finished

Global Futures – moving computation to
data (cont.)

Global Futures – moving computation to
data (cont.)

" Use a multithreaded execution environment on each GA
process
" Main thread can run in normal SPMD mode
" Other threads can execute remote computation requests on

behalf of other processes
" Execute local & GA operations within each future task
" Currently, Intel TBB

" Global Futures use ARMCI’s Global Procedure Call
(GPC) mechanism
" Executes a function in the context of the data server thread on an

SMP node
" Use System V shared memory to communicate the activation to

target process

13

Global Futures – moving computation to
data (cont.)

14

GA data

P0
data

P
1

P
2

P
3

P
4

P
5

P
6

node i

GA data

P0
data

P
1

P
2

P
3

P
4

P
5

P
6

node j

ARMCI GPC call
to process 3 (P3)

on node j

GPC function can
access P3’s GA

data, but not P3’s
private data

Self-Consistent Field (SCF) calculation
" Using GF in the context of the SCF application

benchmark
" Uses the SCF method to construct the Hartree-Fock matrix
" Focusing on the two electron calculation (most time consuming)
" Organized as a set of n4 block-sparse tasks
" Current SCF code uses dynamic load balancing to schedule tasks

on GA processes (next_val)
" does not take advantage of locality (main motivation for GF

implementation)

15

!"

#!!!"

$!!!!"

$#!!!"

%!!!!"

%#!!!"

&!!!!"

!" %" '" (")" $!"$%"$'"$("$)"%!"%%"%'"%("%)"&!"&%"&'"&("&)"'!"'%"''"'("')"#!"#%"#'"#("#)"(!"(%"

!"
#$
%&
"'%

()
("

*+",#-.$(("#%/)"

0-%1"23456%&%/.$"73'8"&-.%&3'9":";<="%'-4("

" Use GF as a mechanism
to improve locality & load
balance
" Ship computation to where

data resides
" Move to remote processes

only when load balance is
needed

Experimental results

16

" Chinook (2310 node DDR Infiniband cluster, dual socket,
quad-core AMD Barcelona processors)
" 1 GA process per node, 6 TBB threads
" 256 atom system with tiles of size 40
" 352 atom system with tiles of size 40

" Caching remote data critical for scalability
" Including accumulates
" Data reuse across threads

Outline

" Motivation
" Execution Models
" Global Arrays (GA)
" Execution Model extensions to GA

" Global Futures

☞ Code Transformation for Legacy Apps
" Conclusion

17

Code Transformation for Legacy Apps

" How do we enable existing applications to take advantage
of innovative techniques?
" In both programming & execution models
" Large legacy code bases: millions of lines of Fortran or C with

embedded communication library calls all over
" Assumptions are built in into the software structure

" “Magical” compilers are nowhere to be found… L
" Believe me, I tried…

" Exploit common code patterns & idioms, as well as
developer knowledge

" Our approach:
" Developer annotations to the code
" Term-rewriting rule-based techniques

18

Code Transformation for Legacy Apps
(cont.)

19

ROSE
Parser

PAUL
parser +

annotation
analysis

Annotated AST

ROTE rule
generator

Term
Rewriting
Engine

Term-rewriting transformations for SCF

" Applied this framework in the context of
the SCF original two-electron calculation

1.  Decouple load balance from work
performed

2.  Localize task enumeration
3.  Local filtering of “real” tasks
4.  Dynamic load balancing with persistent

schedule
a)  via TASCEL work-stealing

framework (S. Krishnamoorthy’s
presentation)

5.  Replicate Schwarz matrix to eliminate
communication

" C source base for the SCF application
benchmark
" Use Cocinelle term-rewriting engine

20

@@
type t1,t2,ty,ty1,ty2;
identifier p1,p2,tid,dotask,twoel,gschwarz;
expression a1,a2,a3,a4,a5,a6,a7,a8,a9;
@@
ty twoel(ty1 p1, ty2 p2){
<...
t1 dotask;
...
t2 tid;
...
for (tid=0; tid<tottasks; tid++) {
dotask=0+translateTask(tid,a1,a2,a3,a4,a5,a6)

;
+
+if(!isLocal(gshwarz,a1,a2,me)) continue;
...
NGA_Get(gschwarz,a8,a9,a7,&ich);
+if(!isReal(a7,*p1,a8,a9)) continue;
...
}
...>
}

Fig. 6. Transformation 3: adding local and real task filtering

@@
@@
#include <ga.h>
+#include <UniformTaskCollectionSplit.h>
+struct task_dscr_t { long taskid; };
@@
type t,t1,t2;
identifier a1,a2;
@@
t twoel(t1 a1,t2 a2){
...
long taskid;
+task_dscr_t tdscr;
+UniformTaskCollectionSplit utc;
...
NGA_Get(...)
-...
+tdscr.taskid = taskid;
+utc.addTask(&tdscr, sizeof(tdscr));

+utc.process();
free(map);
...
}
+/* Add the two electron task function

definition. */

Fig. 7. Transformation 4: add support for dynamic load balancing through
TASCEL
is discarded) and the process repeats the procedure with the
next task identifier fetched by incrementing the loop counter.
If the task is local to the process, another check (isReal())
is added that determines if the task has any real work to do. If
not, the task is discarded and the rest of the loop is skipped.
Only if the task has real work to do, the data is fetched from
the Schwarz and density matrices, the result is computed and
accumulated into the Fock matrix.

Transformation 4: Dynamic load balancing with persistent
schedules

Problem:The localized enumeration of tasks, together with
filtering, significantly imbalances the execution load. These
transformations also preclude the use of the counter-based load
balancer.

Solution:We transform the code to employ a dynamic load
balancing library and perform additional optimizations to
improve the resulting load balance.

Approach:Task Scheduling Library (TASCEL) is a library,
distributed with Global Arrays, that supports scalable dis-
tributed memory load balancing [15]. The parallel units of
work to be performed are organized into tasks that can be
scheduled independently. The library employs random work
stealing coupled with distributed termination detection to
dynamically balance load. While effective in automatically
mitigating load imbalance, the load balancing overhead can
be further reduced by balanced seeding of tasks. We address
this by employing persistent schedules.

In the first iteration, all local tasks are seeded to be
executed using distributed memory work stealing. The local
tasks identified using the loop nest, rather than being executed
immediately, are packaged into task descriptors and added into
a task collection. The task collection is then executed using
TASCEL.

As a further optimization, each process records which tasks
from the original n4 space it actually executed. These tasks
are used to seed the task pools for subsequent iterations of the
SCF algorithm. In addition to avoiding the expense of global
task enumeration and filtering, this potentially reduces the cost
of rebalancing in subsequent iterations.

The transformation involves the addition of twoel_task()
(TASCEL-compatible task function) definition. Most of the
code in twoel() that performs the actual task execution is
moved to this new function. Code to initialize TASCEL and
the task collection are also inserted.

Transformation 5: Replicating the Schwarz matrix to eliminate
communication

Problem:The Schwarz matrix is distributed using Global
Arrays and thus the calculation of real tasks on remote
processes induces communication.

Solution:We recognize that the Schwarz matrix is a read-
only data structure that is populated as part of SCF initializa-
tion. After load-balancing processes will be executing tasks
which are not local to them, thus inducing remote accesses
to the Schwarz matrix. We transform the code to introduce
a gather and broadcast operation for the distributed Schwarz
matrix in such a manner that each process now has a full local
copy of it. The memory requirements for replicating this data
are modest even for the larger problem sizes considered.

Approach:The code is transformed to include an
NGA_Get() operation of the full Schwarz matrix (size:
n2) on process 0, which then broadcasts the data to all other
processes using an MPI_Bcast() operation. The code in the
task computation is also transformed to refer to the local

of cores 1st outer 1st inner stable outer stable inner
256 343.3 342.9 135.9 135.4
512 173.6 173.5 69.0 68.8
1024 87.8 87.8 35.4 35.0
2306 40.2 40.1 17.1 17.1
3600 27.6 27.6 12.2 12.2
4096 23.9 23.9 10.9 10.9
6144 42.2 23.4 7.9 7.9

TABLE III
EXECUTION TIMES (IN SECONDS) FOR 352-ATOM SYSTEM (1st ITERATION

AND STABLE-STATE ITERATIONS)

Fig. 9. Parallel Efficiency: 352-atom input deck

Table IV presents the number of lines of code involved in
the semantic patches to perform the various transformations.
The lines of code are split into “Pattern rules” that correspond
to the patch section that identify the location of the patch and
other key semantic information, and “Extra code,” which are
additional functions introduced to effect the transformations.
Examples include the source lines of code to integrate with the
TASCEL library. We observe that the patches are concise when
taking into account the complexity of the transformations
performed.

VII. RELATED WORK

Directive-based compiler optimizations and transformations
have been around since the days of vector supercomput-
ers [16], [17]. Modern compilers use directive-based ap-
proaches to support shared-memory and accelerator-based
parallelism. Examples of such approaches are OpenMP [18],
OpenMPC [19] the Accelerator programming model [20] from
Portland Group, and the CAPS HMPP Workbench [21]. They
allow developers of scientific applications to target existing
code to newer architectures such as multicore processors and
GPU accelerators. However, the target transformations are
built into the compiler with no support for handling custom
transformations that would be of interest to a developer.

Orio [22] allows developers to insert annotations into source
(C or Fortran) programs that trigger a number of low level
loop optimizations on a block of annotated code. PLUTO [23]
takes C code marked with directives and auto parallelizes it for
multicores and GPGPUs. CHiLL [24] and CUDA-CHiLL [25]
need users to provide transformation recipes through a high

Transformation Pattern rules(#lines) Extra code(#lines)
1 22 36
2 33 17
3 22 -
4 24 70
5 20 15

TABLE IV
LINE COUNT OF THE TRANSFORMATION PATCHES.

level scripting language for enabling loop optimizations. It
provides a programming language approach for specifying
a composition of several transformations. AlphaZ [26] is
another framework that allows computations to be specified
as equations through a high level language called Alphabets
and produces code for multi-cores. The developer has to guide
the semi-automated code generation process by specifying the
desired transformations at intermediate steps. CHiLL, Orio,
AlphaZ and PLUTO are only applicable in context of loop
transformations. These approaches only support generation
and transformations of regular loop nests in programs. Their
emphasis is focused on loop-based programs, given the per-
formance impact that can be achieved by optimizing loops
in scientific applications. Our approach, while more general,
does not use automated analyses such as polyhedral and
dependence-based optimization and instead relies on user-
provided transformations. The MT1 [27] restructuring com-
piler used ideas of term rewriting for restructuring Fortran77
programs. The restructuring rules were specified using a
language based on pattern matching and were processed by the
compiler framework. Since the patterns could be any Fortran77
language construct, a large number of transformations could be
specified, but the approach was not powerful enough to express
more complex general purpose transformations. A successor
to the MT1 system was developed by Boekhold, Karkowski
and Corporaal [28]. This system targets the transformation of
ANSI C programs using a pattern specification language which
is fully integrated into a SUIF-based compiler framework.
Many loop-focused as well as interprocedural transformations
can be specified using the pattern language. The transformation
system was targeted towards embedded applications written
exclusively in C.

Transformations such as the ones described in this pa-
per can be implemented using compiler frameworks such
as SUIF2 [29], ROSE [4], COINS [30], Par4All [31] and
Open64 [32]. This requires the implementer to be a compiler
writer, with deep knowledge of the target languages’ parsing,
the resulting abstract syntax tree and implementing the trans-
formations as tree traversals on the ASTs using the compiler’s
internal class hierarchies.

Annotations in languages such as X10 [33], [34] and
Java [35] enable extensions to the language and compilation
environment without changing the language semantics or the
compiler framework. Programmers employ annotations to as-
sociate meta-data with language elements (methods, classes,
etc.). These are available at runtime to perform various checks.
In addition, external tools and compiler plugins can perform
additional transformations and optimizations guided by these

Term-rewriting for SCF (performance)
" Experiments with 256 & 352 atoms on PNNL’s PIC cluster (640

nodes, dual-socket AMD Interlagos, 64 GB RAM per node, QDR
Infiniband)

21

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

P
ar

al
le

l
E

ff
ic

ie
n
cy

Cores

Base
Tascel

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1000 2000 3000 4000 5000 6000 7000

P
ar

al
le

l
E

ff
ic

ie
n

cy

Cores

Base
Tascel

" Quite effective! How about a real app?

Term-rewriting for CCSD module in NWChem

" Applied term-rewriting techniques to transform the Coupled Cluster
module in NWChem (2.9 million lines of Fortran) (CCSD)

" Somewhat different toolchain since it’s Fortran
" MiniTermite term representation + Stratego/XT term rewriting engine

22

Term-rewriting for CCSD module in NWChem
(cont.)
" Transformations:

" Reduce synchronization by using a DAG schedule
" Improve load balance by reducing task granularity

23

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

1050 2100 4200 8400

T
im

e
(s

e
co

n
d

s)

Number of cores

baseline-t2
levelized-t2
expanded-t2

Conclusion

" Exascale presents many challenges for applications as
well programming model implementers

" Dynamic behavior of the application has to be more
flexible & adaptive
" React to load imbalance, power constraints or faults

" Execution model extensions are a way of achieving this
objective

" However, existing codes need a migration path towards
more flexible & dynamic code structures
" Our approach: developer annotations + term rewriting

transformations
" Adapt legacy codes to enable more dynamic execution behavior

24

Questions?

