Programming & Execution Models
for Exascale: Abundant Parallelism
in the Presence of Constrained
Resources

Daniel Chavarria-Miranda

High-Performance Computing
Pacific Northwest National Laboratory

Productive Programming Models for Exascale %
Pacific Northwest

AAAAAAAAAAAAAAAAAA

Proudly Operated by Battelle Since 1965

> Motivation
» Execution Models
» Global Arrays (GA)

» Execution Model extensions to GA
m Global Futures

» Code Transformation for Legacy Apps
» Conclusion

o

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

Motivation/Exascale Challenges

» Challenges at exascale:
m Massive hardware component count
o Processing elements/cores
m Power & energy constraints

o Maybe not all hardware components can be lit up
simultaneously

m Reliability & resiliency
o Larger component counts, lower voltages
m Constrained memory bandwidth & capacity
m Major changes in intra-node architecture
o 1000’s of cores per node not unlikely
o Coherent shared memory between all of them?

» Today’s programming and execution models are not
prepared for such environments \%/

Pacific Northwest
NATIONAL LABORATORY

3 Proudly Operated by Battelle Since 1965

>
> Execution Models
» Global Arrays (GA)

» Execution Model extensions to GA
m Global Futures

» Code Transformation for Legacy Apps
» Conclusion

o

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

Execution Models

» What is an execution model?

m Describes dynamic behavior of the running application across all
levels (from hardware to systems software to the application itself)

» Execution models can be characterized with four
attributes
m Concurrency, Memory, Locality, Synchronization

» Example execution models:
m Communicating Sequential Processes (CSP): used for MPI
m Multithreaded fork-join: used for OpenMP
m Thread-blocks in lockstep: used for CUDA

» How are they different from programming models?
m Programming models convey a static view used when developing

an application \Ef/

Pacific Northwest
NATIONAL LABORATORY

5 Proudly Operated by Battelle Since 1965

Execution Models (cont.)

» Today’s most used execution model on HPC systems is

CSP

m As implemented by the MPI-compatible execution environments

on HPC systems

m Concurrency: fixed number of processes (p) created at startup

m Memory: private, per process memory space, processes interact

only via message passing

m Locality: runtime and OS can map private per process memory
with (almost) maximal locality, subject to available memory

m Synchronization: implicit pair-wise synchronization when
exchanging messages between processes, multi-process

synchronization via rich set of collectives

v Very successful, very effective model for
many applications on today’s systems

MPI barrier/collective

Execution Models (cont.)

» However, there are problems with the CSP model at
scale

Processes can be delayed if their communication partners are
not ready

Load imbalances (even small ones) can affect when processes
reach communication points, with stronger effects on collectives

Fully private memory, while excellent for locality is somewhat
inflexible

» PGAS “relaxation” of CSP

Concurrency: no major change

Memory: private, per process memory space + remotely
accessible memory

Locality: private memory space can be mapped with maximal
locality, remotely accessible space requires special treatment

Synchronization: special constructs to synchronize remote
memory accesses

Result: better asynchrony between processing entities, more
flexibility in global memory access (interactions)

Global Arrays — global-view distributed

dense arrays

» Global Arrays (GA) is a library-based partitioned global address
space (PGAS) programming model

m Focused on enabling global-view access to distributed dense arrays
m Developed over the past 20 years

m Used heavily in computational chemistry applications

m Petascale performance for production applications

e 1.39 PFLOPS NWChem coupled cluster calculation on ORNL’s
Jaguar

o SC'09 Gordon Bell finalist
» GA focuses on providing one-sided access to

Physically distributed data

o

array slices in the global space 0

= GA_Put(), GA_Get(), GA_Acc() primitives \ y
» Communication support is provided by the Y

Aggregate Remote Memory Copy Interface

(ARMCI) runtime mm

m Native ports over networks, as well as MPI port Global Address Space

Global Arrays — global-view distributed

dense arrays (cont.)

» GA uses the standard MPI-compatible Communicating
Sequential Processes (CSP) execution model

m GA processes correspond one-to-one to MPI ranks
m Fully interoperable with MPI can mix & match calls to both APls

» Dense array slices in a global array are “owned” by the GA
processes (according to data distribution)

m Data is directly accessible via load/store to all GA processes on that
node

» Explore execution model alternatives within the GA context

o

Pacific Northwest
NATIONAL LABORATORY

9 Proudly Operated by Battelle Since 1965

>
>
>

5~ Execution Model extensions to GA
m Global Futures

» Code Transformation for Legacy Apps
» Conclusion

o

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

Global Futures — moving computation to

data

» Global Arrays (GA) is heavily focused on enabling efficient PGAS
data movement

m Move data to and from processes, within a CSP model

» What about moving computation to the data?

m Similar to an Active Message, but directed to the location that owns a
particular piece of data

m i.e., execute foo(a, b, c) on_home(d(1:10, 2:200))

m Similar abstractions exist in other programming models (Charm++, X10,
Chapel, Active Pebbles, others)

» Advantages:

m Moving an activation record (or continuation) can be much faster than
moving a whole array slice

m Once the computation is in place, it can take full advantage of locality

» Challenges:
m Want to enable this in the context of GA
m |Implies using one-sided computation activation on remote locations
m The main process should not be involved Pacific Northwest

NATIONAL LABORATORY

P Explore alternative integration of multithreaded '1!,898,!,§wdby3aﬂe11es,-m 1065

Global Futures — moving computation to

data (cont.)

Po oF
n [72]
n [72]
()] (0]
(&) (]
o |g o
1 £
finis I
v - o 'z Y
V2
@
o r 1 =
S
2 o
- —
R =
—
d 3 O
o | [S
= —
(Ul S
o L 13
N

Pacific Northwest
NATIONAL LABORATORY

12 Proudly Operated by Battelle Since 1965

Global Futures — moving computation to

data (cont.)

» Use a multithreaded execution environment on each GA
process
m Main thread can run in normal SPMD mode

m Other threads can execute remote computation requests on
behalf of other processes

m Execute local & GA operations within each future task
m Currently, Intel TBB

» Global Futures use ARMCI’ s Global Procedure Call
(GPC) mechanism

m Executes a function in the context of the data server thread on an
SMP node

m Use System V shared memory to communicate the activation to

target process

Pacific Northwest
NATIONAL LABORATORY

13 Proudly Operated by Battelle Since 1965

Global Futures — moving computation to

data (cont.)

node j node j

GA data
4
GPC function can
ARMCI GPC call access Pj’s GP’\
to process 3 (P3) data, but not P;'s
on node j private data

o

Pacific Northwest
NATIONAL LABORATORY

14 Proudly Operated by Battelle Since 1965

Self-Consistent Field (SCF) calculation

» Using GF in the context of the SCF application
benchmark

m Uses the SCF method to construct the Hartree-Fock matrix
m Focusing on the two electron calculation (most time consuming)

m Organized as a set of n* block-sparse tasks

m Current SCF code uses dynamic load balancing to schedule tasks
on GA processes (next_val)

o does not take advantage of locality (main motivation for GF
implementation)

Load (im)balance with locality - 256 atoms

» Use GF as a mechanism

to improve locality & load o
balance

15000

m Ship computation to where
data resides

real tasks

10000

m Move to remote processes

5000

only when load balance is

needed 0 2 4 6 8 101214 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62

15

Experimental results

» Chinook (2310 node DDR Infiniband cluster, dual socket,
quad-core AMD Barcelona processors)

m 1 GA process per node, 6 TBB threads
m 256 atom system with tiles of size 40
m 352 atom system with tiles of size 40

» Caching remote data critical for scalability
m Including accumulates
m Data reuse across threads

Execution Time SCF 256 atoms

Execution Time SCF 352 atoms

1000.00

10,000.00

100.00

~&futures
~#—|deal

time inseconds
time in seconds

~B-futures
| ——
i processes 100.00 aeal

10.00 - .) b

10 100 1000 10000 50 500 5000

cores W cores

>
>
>
>

|
=~ Code Transformation for Legacy Apps
» Conclusion

o

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

Code Transformation for Legacy Apps

» How do we enable existing applications to take advantage
of innovative techniques?

= In both programming & execution models

m Large legacy code bases: millions of lines of Fortran or C with
embedded communication library calls all over

o Assumptions are built in into the software structure

» “Magical” compilers are nowhere to be found... ®
m Believe me, | tried...

» Exploit common code patterns & idioms, as well as
developer knowledge

» Our approach:
m Developer annotations to the code
m Term-rewriting rule-based techniques

o

Pacific Northwest
NATIONAL LABORATORY

18 Proudly Operated by Battelle Since 1965

Code Transformation for Legacy Apps

N
Annotated

Annotated AST
PAUL
ROTE rule | (o mmm | 3T
generator | % annotation
analysis
|\
N\

Transformed
Sources

Pacific Northwest
NATIONAL LABORATORY

19 [Proudly Operated by Battelle Since 1965

Term-rewriting transformations for SCF

» App

lied this framework in the context of

the SCF original two-electron calculation

1.

Decouple load balance from work
performed

Localize task enumeration
Local filtering of “real” tasks

Dynamic load balancing with persistent
schedule

a) via TASCEL work-stealing
framework (S. Krishnamoorthy’s
presentation)

Replicate Schwarz matrix to eliminate
communication

» C source base for the SCF application
benchmark

m Use Cocinelle term-rewriting engine

20

@e

type tl,t2,ty,tyl,ty2;

identifier pl,p2,tid,dotask,twoel, gschwarz;
expression al,a2,a3,a4,a5,a6,a7,a8,a9;

@@

ty twoel(tyl pl, ty2 p2){

<...

tl dotask;

t2 tid;

for (tid=0; tid<tottasks; tid++) {
dotask=0+translateTask (tid,al, a2, a3, a4, a5, a0)

+
+if (!isLocal (gshwarz,al,a2,me)) continue;

NGA_Get (gschwarz,a8,a9%,a’, &ich);
+if (!isReal (a7, *pl,a8,a9)) continue;

}

>

}

Transformation | Pattern rules(#lines) | Extra code(#lines)
1 22 36
2 33 17
3 22 -
4 24 70
5 20 15
TABLE IV

LINE COUNT OF THE TRANSFORMATION PATCHES.

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

Term-rewriting for SCF (performance)

» Experiments with 256 & 352 atoms on PNNL'’s PIC cluster (640

nodes, dual-socket AMD Interlagos, 64 GB RAM per node, QDR
Infiniband)

1 X%

Base —%—
Tascel —©— |

0 500 1000 1500 2000 2500 3000 3500 4000 4500 0 1000 2000 3000 4000 5000 6000 _ 7000
Cores # Cores

» Quite effective! How about a real app?

o

Pacific Northwest
NATIONAL LABORATORY

21 Proudly Operated by Battelle Since 1965

Term-rewriting for CCSD module in NWChem

» Applied term-rewriting techniques to transform the Coupled Cluster
module in NWChem (2.9 million lines of Fortran) (CCSD)

» Somewhat different toolchain since it's Fortran
m MiniTermite term representation + Stratego/XT term rewriting engine

\ ROSE parser Minitermite
Input Source > ROSE AST » Term Sequence
(Fortran) /
Stratego
ROSE Minitermite
t to AST
Transformed Sourca‘ Hnparser Transformed ROSE ‘(erms to AST) Transformed Term
(Fortran) J‘ AST - Sequence

o

Pacific Northwest
NATIONAL LABORATORY
22 Proudly Operated by Battelle Since 1965

Time(seconds)

23

Term-rewriting for CCSD module in NWChem

(cont.)

» Transformations:
m Reduce synchronization by using a DAG schedule
m Improve load balance by reducing task granularity

1000
900
800
700
600
500
400
300
200
100

|
baseline-t2 —e—

levelized-t2 —a—]
expanded-t2 —e— -+

1050 2100
Number of cores

4200

8400

PO D
g0y &
i Q.
(A) DDG __CE_D__ _
® 6 _@_ (B) Baseline
—& & - ®.
_____________ ©.
(C) Levelized ®

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

Conclusion

» Exascale presents many challenges for applications as
well programming model implementers

» Dynamic behavior of the application has to be more
flexible & adaptive

m React to load imbalance, power constraints or faults

» Execution model extensions are a way of achieving this
objective

» However, existing codes need a migration path towards
more flexible & dynamic code structures

m Our approach: developer annotations + term rewriting
transformations

m Adapt legacy codes to enable more dynamic execution behavior

o

Pacific Northwest
NATIONAL LABORATORY

24 Proudly Operated by Battelle Since 1965

W

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

