
Performance Analysis and Modeling: 
Experiences from Large-scale Systems 
Darren J. Kerbyson 
Kevin J. Barker 
Adolfy Hoisie 

1 



Analysis and Modeling used throughout life-cycle 

Model 

System unavailable for measurement 
Rapid design-space exploration. 
 e.g. PERCS large-scale system performance 

Which system should PNNL buy ?  
Modeling used in procurements for almost a decade 

Small scale (nodes) available 
Predict large-scale system performance using  
measurements @ small-scale 

Is the machine working? 
Performance should be as expected 

Improvements 
Quantify impacts prior to implementation 

Runtime operation 
The Performance Health Monitor: 
Is the system healthy today? 

Design 

Procurement 

Implementation 

Installation 

Optimization 

Maintenance 



Performance vs. Abstraction 

The tension between performance and abstraction 
is as old as computing itself. 


   Intimate knowledge of, and direct access to,  
the underlying hardware allows the  
extraction of best possible performance 


   Abstraction makes programming easier, and 
programs more portable, typically via 

   Programming languages 

   Libraries 


   Work on accelerated systems has shown that 
apps can be optimized to utilize multi-core 

   With a high learning curve 

   And still at great programmer effort. 


   How can we get higher level abstraction? 
 …and at what cost in performance? 

Abstraction 

Performance 

Ease of  
programming 

Closer to the 
architecture 

Can we shrink 
this Gap? 



Increasing Architectural Complexity 


   Landscape increasingly complex: 

   Cores, threads, heterogeneity  

   Memory Hierarchy 

   Communication Hierarchy 

   Power constraints 


   Use modeling to analyze in-advance   

   Co-design: Apps & System possibilities 


   Experiences from two recent systems: 

   Hybrid system with accelerators (Roadrunner) 

   Homogeneous system (IBM PERCS / Blue Waters) 

4 



A 

A 

M 

A 

A 

M 

Design Space Exploration: 
Circa 2005 Two-level Heterogeneous System 


   Compute nodes (e.g., with 2-sockets)  

   HPC interconnection network (e.g., Infiniband) 

   Accelerators placed in each node (e.g., PCI based) 

P P 

M 

PCI 

P P 

M 

PCI 

HPC 
Network 

Node 1 Node N 

A 

A 

M 

A 

A 

M 

1) Start-up 
 Node → Accelerator 

2) Process on accelerator 
3) Inter-node communication 

 Accelerator → Node →  
 HPC Network →  
 Node → Accelerator 

4) Repeat 2 (& 3) 
5) Finalize 

 Accelerator → Node 

… 



Modeling used to Explore Accelerator 
Configurations 


   Limited performance gains using cores per accelerator 

   Realization that current code had limited parallelism 


   Scope for larger problems (?) 

   Restructuring of code (yes) 

  Application centric model 
  Main parameters 

–  Problem size 
–  Compute costs 
–  Cores per accelerator 
–  Node count 
–  Communication costs 

»  Intra- & inter- accelerator 

# compute cores = # Accelerators 



Example Hybrid system: Roadrunner  


   Hybrid 

   AMD Opterons blades 

   IBM PowerXCell 8i (Cell)  

   One-to-one: Opteron-to-cell 


   Compute node 

   1x Opteron blade (2x dual-cores) 

   2x Cell blades (each: 2x 

PowerXCell8i) 

   All standard services provided  

by the Opterons 

   Application challenge:  


   Efficient utilization of all resources 

In
fin

ib
an

d 
4x

 D
D

R
 

Accelerator Accelerator 

Compute Node 

HT2100 HT2100 IB
 4

X
 

D
D

R
 PCIe x8 

HT x16 

91% flops 
83% memory bandwidth 
50% memory capacity 



Several ways to use A Hybrid system 

Non-hybrid (host only) 

   Codes run without modification 

Accelerator Accelerator 

Compute Node 

N
et

w
or

k 

Hybrid (host and accelerator) 
–  Code performance hotspots 

ported to the accelerator 
–  Also incremental porting 

Accelerator-centric 
–  Need support for communications 

between Accelerators 



Hybrid (general accelerator approach) 


   One rank per host-core 


   Host-core see each other and their 
local accelerator-cores 


   Host-cores push work (data) to 
accelerators and receives results 

Accelerator Accelerator 

Compute Node 



Example: Thread Building Blocks 


   TBB explored as a possible 
programming model for 
Roadrunner 

   Host-cores execute a TBB 

application 

   Each accelerator implements a 

work queue 

   Compute bottleneck of the 

accelerator support processor 
(limits performance) 


   Portability but at a performance 
cost 

Winner Engineering Category: 2009 DOE Science and Energy Research Challenge (SERCh)  

Accelerator Accelerator 

Compute Node 

Pool of Qs 

TBB app 



Reverse Acceleration Model 


   MPI for the accelerator cores 

   One rank per core 


   Accelerator cores see each 
other and their local host 

   Direct core-to-core 

communication 

   Host and PPE act as support 


   Decelerate activities 

   Host = NIC (support) 

Accelerator Accelerator 

Compute Node 



Critrical issue: Communication  
(irrespective of model) 

   Hierarchy of channels, e.g. 


   Intra-chip: accelerators 

   Inter-chip: accelerators 

   Intra-node: accelerator to Host 

   Inter-node: Host to Host 

  Inter node communication between accelerators requires multiple steps 

e.g. 0-byte latency 

                Latency     Bandwidth 
                 0-B, µs    128-KB, GB/s 

Intra-chip SPE->SPE   0.3  23.9   
Inter-chip SPE->SPE   0.8    4.5 
Intra-node PPE->Opteron  3.2    0.7 
Inter-node Opteron->Opteron  2.1    0.8 



Example: Wavefront processing 


   Processing dependency between grid-points 

   determines ordering within and between cores 


   Decomposition = data dimensionality minus one 

   Use blocking to increase efficiency 

K 
B I s 

J s 4x4 processors 
(top view) 



Explored optimizations using Modeling 


   Reduce inter-domain (slow) communications, but 

   Increase computation steps, and 

   Increase on-chip (fast) communications 


   Trade-off: computation vs. communication 

DomainRootXrecv 

DomainRootYrecv 

DomainRootXsend 

DomainRootYsend 
D

om
ai

nY
co

re
s 

DomainXcores 

1 

2 

3 

4 

  Micro-blocking 
–  Split block into smallest unit  

(a single K-plane) 
–  All rapid propagation across 

domain using on-chip comms 
–  One point of entry (and exit)  

per dimension in a core-domain 



Micro-blocking is advantageous at large-
scale & with large message latencies 


   Use of micro-blocking beneficial in the green areas 

   Dependent on scale, inter-domain message time, k-plane 

compute time (as well as problem size and blocking) 

1µs 4µs 8µs 
Compute time / k-plane 



Design Space Exploration:  
E.g. Performance Modeling – IBM PERCS & BlueWaters 


   Modeling used to explore and guide design of PERCS 
using application suite 


   Modeling used to predict performance of NSF applications 
on Blue Waters, and subsequently in lead up to 
deployment 

PERCS  
simulator Application(s) 

Simulated 
run-time  

(1PE, 1chip) 

System Design 
Network topology 

Latency 
Bandwidth 
Contention … 

cores per chip 
Performance 

Model 

Large-scale 
Performance 
Predictions 

IBM 



Example topology comparison 


   FC  Fully-connected 1-hop 

   OCS 1-hop or 2-hop 

   2D, 3D  meshes 

   FT  Fat-tree 

   OCS-D  OCS-Dynamic 

 (OCS = Optical Circuit Switch) 


   Best hardware latency  
of 50ns, 4GB/s links 


   Graph shows relative performance of each network  
relative to the best performing network 



Overview of Blue Waters 

18 

Core 

Processor 

QCM 

SuperNode 

8c 

32c 

32 QCMs 
1024c 

Fully-connected 

Fully-connected 

Logical View: 
Communication Hierarchy 



System (fully-connected) 

19 

. . 

. .  . . 

. 
. 

. 
. 

. . . . 

. . 

•  Two levels of full-
connection:  
•  Intra and inter SN 

•  One channel between 
any two SNs 
•  (8 in example) 

•  Communication from 
one SN to another 
can be done through 
an intermediate SN 
•  Two stage comms 

Fully-connected 



Performance Modeling during Production: 
The Performance Health Monitor  


   Aim: pinpoint sources of lost 
performance on large-scale 
systems and allow applications to 
experience a consistent 
performance environment 


   Coupling of fast modeling and 
measurement 


   Important aspect: knowledge of 
what performance to expect from 
a system 


   3-way collaboration: 

   Lead: Los Alamos (PAL)  & 

        IBM (Austin Research Lab)  
         Cray 



Summary 


   Performance modeling has significant utility 

   System / application configurations & impact of programming model 


   Experiences of hybrid systems has shown 

   Multiple prog. Models (Acceleration, Reverse acceleration) 

   Possibilities are dependent on capabilities & connectivity of cores 

   Code porting / optimizations can requires significant application rethink 

   Architecture specifics should (hopefully) be kept to a minimum 


   Modeling also used for wide variety of possible configurations 

   Blue Waters; Low power embedded processors; many-core 


   Co-design: exploring possibilities in advance of implementations 

   Successes mirror that of GA and its application base 


