Global Arrays
Random Thoughts

Robert Harrison
UT/ORNL

History and Design

* Prototyping at very start of NWChem project

* Model full application not just kernel
e 80-20 rule — more like 90-10 rule

 GA designed to solve a problem

 Distributing large data structures while supporting
iIrregular computation

 Entire HF code

* First 2 attempts (Linda-like) worked for kernel but
not the rest of the code

History and Design

* First prototype

e Matrices only
o Put/Get/Acc
 Some collective operations

e Crude sequential and parallel implementations
(Intel Delta ?)

Jarek made GA what it is now

He immediately took full ownership of GA

His vision, energy, experience, rigorous C/S
background were essential in making this a
viable platform for NWChem and other apps

 Three P’s — portability, performance, productivity

At least three complete revisions of the design
and implementation since version-0

luge expansion in functionality

Rationale for elements of GA

e Put/Get/Acc

* One-sided access without any implicit/explicit sync
* Acc — huge gain in efficiency and productivity
* \Weak consistency model

* Very important for efficiency

» Reflects common algorithm structure

— Data structures usually either read only, or
write/accumulate only

» Sequential consistency important

Rationale for elements of GA

« Memory model — no active messages

 Maps to what compute does — move data

 |In that era shared-memory still important and active
messages had very high latency and low portability

* As a consequence, sometimes faster than MPI

— Lighter protocol
- Weaker sync
- Reduced buffering problems, known destination in mem

 Library-based approach
e Portable, requires less C/S effort, essential first step
 Fred knows we begged and pleaded for language funding

Rationale for elements of GA

« Address using application-meaningful indices
« Huge productivity gain — hide partitioned memory
« App. can control and exploit distributions as needed

« Can experiment with multiple distributions and leave
algorithm unchanged

* Array abstractions

« Essential to make the 90% of the code easier to write
« Hides horrific parallel library interfaces

* Motivated by the application
- Other domains need different abstractions

Key design elements

 Distribution of large data structures

 Enable use of aggregate resources

* One-sided memory access

 Enable irregular algorithms and access patterns

» Application specific abstractions (arrays)
 Enable scientist productivity

Initial experience in NWChem

« Expected ~50% of the code to use GA

« But was adopted by the entire code

* Bits still using message passing benefit from the
iImplied synchronization to manage data flow and
dependencies

 E.g., parallel Fourier transform, linear algebra
algorithms,

« NUMA model

 Much easier to reason about performance
 Must ensure assumptions valid

Issues

« High machine dependence — need co-design
« Every machine has had H/W and/or S/W bugs

- Flow control, progress, corner cases
 MPI 1/2 forums punted on one-sided

 Original version 2D
 nD added ~10yrs ago?
 Original version blocking
e async added ~5yrs ago”?

« But current async requires explicit buffer management
(low level)

Issues

e Array abstraction

* Not a good match for all applications

e |eads to “assembly-level” GA programming
 |t's an opaque API

» Like MPI
 Compiler has no knowledge of what is going on

* Highest costs and bug density associated with logic
and interfaces

Issues

* Consider typical application

 |dentify which data structures to distribute and
which to replicate

- Hard to change this decision if problem size changes

 |dentify which loops provide coarse grain
concurrency

- Hard to change this decision if need more concurrency
 Expensive manual intervention required to
* Re-target code (tera, peta, exa, hybrid, ...)
 Change decisions about data

Issues

Interoperability — no kitchen sink environment
* Always compatible with MPI

Only 2-levels of memory hierarchy

» Disk arrays might be regarded as third
» Local and global data only

No awareness of multicore (or hybrid)
No awareness of physical memory hierarchy
No aggregation?

What's changed since 19927

« Computers

« Massive concurrency and multicore
 Deeper memory hierarchy

 More intelligent NICs (or spare cores)

« Balance of CPU speed and comm. bandwidth
« Latency still in micro-sec range

« Fault tolerance

« Different types of memory (persistent, transactional)
« Consequences

 More outstanding remote references

e Opportunities for different programming models
- Move computation to data

What's changed since 19927

e Languages

o C++ now mature, powerful and fast

Scripting languages

Charm++, Cilk, HPCS languages

- Different parallel constructs, remote action, virtualization
PGAS experience

- A step forward for some kernels, but compiler optimization still
very limited

- UPC added active messages to move compute to data
More experience with different data structures

- E.g., associative arrays

What's changed since 19927

* Applications

» Algorithms & data now even more irregular, e.g.,

- Fast multipole (n-trees)
- Multiresolution (n-trees, nested grids, and hash-tables)
- Reduced-scaling many-body (block sparse n-arrays)

* Multidisciplinary applications
- Interoperability is essential
* Broader use of different parallel decomposition

- Task-based (esp. in context of hybrid)
- Object-based (e.g., NAMD)

Going forward

 \Who/what will write GA code?”?

 Humans?
 Code generators?
 DSLs increasingly important

 What are the top 3 problems GA will solve?

e Science
* Productivity

 How does it fit in the ecosystem/toolchain?
e Co-design

Multiresolution
Adaptive
Numerical
Scientific

Simulation

Multiresolution Adaptive Numerical
Scientific Simulation

Ariana Beste', George I. Fann', Robert J. Harrison'?,

Rebecca Hartman-Baker!, Judy Hill', Jun Jia',

1Qak Ridge National Laboratory
?University of Tennessee, Knoxville

in collaboration with
National Science Foundation
wuere o1scoGregery Beytkin®, Lucas Monzon?,

Martin Mohlenkamp® and Hideo Sekino®
‘University of Colorado
SOhio University
SToyohashi Technical University, Japan

harrisonrj@ornl.gov

<l T~

MADNESS 2009 UT_BATTE |_1LE

84 scientific Discovery through Advanced Computing OAK RIDGE NATIONAL LABORATORY

Jun Jia
=~ Tetsuya Kato
Rebecca Justus Calvin

- - |
A W' Hartman-Baker J- Peli
GreQJOI’y Beylkln

Wi

Hideo Sekino

At {4 . - 20
- Takahiro | = Paul Sutter
Nicholas Vence Scott Thornton Matt Reuter

Funding

MADNESS started as a DOE SciDAC project and the majority of
its support still comes from the DOE

DOE SciDAC, divisions of Advanced Scientific Computing
Research and Basic Energy Science, under contract DE-ACO05-
000R22725 with Oak Ridge National Laboratory, in part using the
National Center for Computational Sciences.

DARPA HPCS2: HPCS programming language evaluation

NSF CHE 0625598: Cyber-infrastructure and Research Facilities:
Chemical Computations on Future High-end Computers

NSF CNS-0509410: CAS-AES: An integrated framework for
compile-time/run-time support for multi-scale applications on high-
end systems

NSF OCI-0904972: Computational chemistry and physics beyond
the petascale

MADNESS 2009 21

Outline

* This presentation provides a brief overview of
the who, what, why, and how of MADNESS

— What does it do?

— Why does it advance our abilities?
— How does it work?

— What do we need to fully realize our
potential?

MADNESS 2009

22

What is MADNESS?

* MADNESS is a framwork
— Like NWChem, PETSc, ..

* Frameworks
— Increase productivity; hide complexity
— Interface disciplines
— Capture knowledge
— Open HPC to wider community
— Expensive, communal projects with broad impact

MADNESS 2009

23

What is MADNESS?

* A general purpose numerical environment for reliable
and fast scientific simulation
— Applications already in nuclear physics, chemistry, atomic
physics, material science, with investigations beginning in
climate and fusion.
* A general purpose parallel programming
environment designed for the petascale
— Standard C++ with concepts from Cilk, Charm++, HPCS
languages, with a multi-threaded runtime that dynamically

manages task dependences, scheduling and provides
global data view.

— Compatible by design with existing applications

MADNESS 2009 24

Why MADNESS

* Complexity constrains all our HPC ambitions

— Hardware
* Millions of cores with deep memory hierarchy

— Software

* Crude parallel programming tools with explicit expression and
management of concurrency and data

— Scalable algorithms and math
* Need rapid deployment of the latest and greatest

— Science, physics, theory, ...
* Constantly evolving but can take years to implement

MADNESS 2009 25

Why MADNESS

MADNESS

— Reduces S/W complexity since programmer not
responsible for managing dependencies, scheduling,
or placement

— Reduces S/W complexity through MATLAB-like level
of composition of scientific problems with guaranteed
speed and precision

— Reduces numerical complexity by enabling solution of
integral instead of differential equations

— Framework makes latest techniques in applied math
and physics available to wide audience

MADNESS 2009 26

MADNESS status on jaguarpf

* Deployed at full scale

— Running production 3D and 4D simulation of
atoms/molecules in intense laser fields (ramping up
to 6D by summer)

— Commencing production simulations of nanoscale
systems for energy storage

* Fully multi-threaded scaling to at least 16 cores
per SMP node

— Custom kernel executes at circa 75% peak
— Circa 50% of time in kernel (=> 37% overall)

MADNESS 2009

27

The math behind the MADNESS

* Discontinuous spectral element basis

— High-order convergence ideally suited for modern
computer technology

* Multi-resolution analysis for fast algorithms
— Sparse representation of many integral operators
— Precision guaranteed through adaptive refinement

* Separated representations of operators and
functions

— Enable efficient computation in many dimensions

MADNESS 2009

28

L
i

il
il

Essential techniques for fast
computation

* Multiresolution Viel eV,
Vn=V0+(V1—VO)+---+ V =V

* Low-separation M d
rank ° f(xla""x”):;O-I]-:Jl:f(il)(xi)_l_O(g)

1F,=1 &,>0

* Low-operator

_ T
rank A= :1uﬂa Vv —I—O(e)

IRy
Y7
T T

O'%ms@zowvﬂ vV, Zuﬂ u, :5,ch 30

Separated form for integral operators

T*f=f dSK(r—S)f(S)
* Approach

— Represent the kernel over a finite range as a sum of products
of 1-D operators (often, not always, Gaussian)

nl —1' nl,—1' nl. —1'

Zfﬂ,lkk ZX xY kak Z+O(€)

— Only need compute 1D transition matrices (X,Y,Z)

— SVD the 1-D operators (low rank away from singularity)
— Apply most efficient choice of low/full rank 1-D operator
— Even better algorithms not yet implemented

MADNESS 2009 31

High-level composition

* Close to the physics

1

=Ll — = N T >

1
| > — >~ |

yr—— = ()

operatorT op = CoulombOperator (k, rlo,

functionT rho = psi*psi;

double twoe = inner (apply (op,rho) ,h rho);

double pe = 2.0*inner (Vnuc*psi,psi);

double ke = 0.0;

for (int axis=0; axis<3; axis++) {
functionT dpsi = diff (psi,axis);
ke += inner (dpsi,dpsi)

}

double energy = ke + pe + twoe;

MADNESS 2009

thresh) ;

32

MADNESS architecture

MADNESS applications - chemistry, physics, nuclear, .

ﬁ ¥

\
MADNESS math and numerics
[J
s N
MADNESS parallel runtime

[

. N

MPI } { Global Arrays } [ARMCI } [GPC/GASNET

J

Intel Thread Building Blocks being considered as alternative for multicore
MADNESS 2009

33

Runtime Objectives

* Scalability to 1+M processors ASAP
* Runtime responsible for

* scheduling and placement,

* managing data dependencies,

* hiding latency, and

* Medium to coarse grain concurrency
* Compatible with existing models

* MPI, Global Arrays

* Borrow successful concepts from Cilk, Charm+
+, Python

* Anticipating next gen. languages

MADNESS 2009

34

Why a new runtime

* Because MADNESS computation is very irregular
and dynamic

— Imagine 1000s of independent, dynamically refined
meshes that change every time an operator is applied
(in order to guarantee precision)
* Because we wanted to make MADNESS itself
easier to write not just the applications using it

— We explored implementations with MPI, Global Arrays,
and Charm++ and all were inadequate

* MADNESS is helping drive

— One-sided operations in MPI13, ASCR projects in fault
tolerance, ...

MADNESS 2009 35

Key elements

Futures for hiding latency and automating
dependency management

Global names and name spaces
Non-process centric computing
— One-sided messaging between objects

— Retain place=process for MPI/GA legacy
compatibility

Dynamic load balancing
— Data redistribution, work stealing, randomization

MADNESS 2009 36

Futures

* Result of an
asynchronous
computation

- Cilk, Java, HPCLs

* Hide latency due to
communication or
computation

* Management of
dependencies
- Via callbacks

int f(int argqg);
ProcessId me, p;

Future<int> rO=task(p, £, 0);
Future<int> rl=task(me, £, r0);

// Work until need result

cout < r0 << rl <K< endl;

Process “me” spawns a new task in process “p”

to execute £ (0) with the result eventually returned

as the value of future r0. This is used as the argument
of a second task whose execution is deferred until

its argument is assigned. Tasks and futures can
register multiple local or remote callbacks to

express complex and dynamic dependencies.

Global Names

* Objects with global names

with different state in each
process

- C.f. shared[threads]
in UPC; co-Array

Non-collective constructor:
deferred destructor

- Eliminates synchronization

class A : public WorldObject<A>{
int f(int);

};

ProcessID p;

A a;

Future<int> b = a.task(p,&A::£,0);

A task is sent to the instance of a in process p.

If this has not yet been constructed the message
is stored in a pending queue. Destruction of a
global object is deferred until the next user
synchronization point.

Global Namespaces

* Specialize global names to class Index; // Hashable
containers class Value {
- Hash table done double f(int);
- Arrays, etc., planned b7

WorldContainer<Index,Value> c;

* Replace global pointer Index i,3; Value v;
(process+local pointer) with c.insert(i,v);
more powerful concept Future<double> r =

c.task(j, &Value: :£,666) ;

* User definable map from keys
tO uownern prOCESS A container is created mapping indices

to values.
A value is inserted into the container.

A task is spawned in the process owning
key j to invoke c[j].£(666) .

Namespaces are a large part of the elegance of Python and success of Charm++ (chares+arrays)

Multi-threaded architecture

Application

logical main # Task dequeue
thread

s

Outgoing active messages

Must augment with cache-aware
algorithms and scheduling
MADNESS 2009

RMI Server
(MPI or portals)

Incoming active
messages

40

Summary

« MADNESS is a general purpose framework for scientific
simulation
— Conceived for the next (not the last) decade

— Makes scientific HPC more productive by reducing various
sources of complexity

— Deploys advanced numerical and C/S methods

« Science applications on top of MADNESS are
separately funded but ...

« MADNESS requires continued support for research,
development and deployment of the enabling C/S and
math on present and future architectures

MADNESS 2009 41

