

Global Arrays
Random Thoughts

Robert Harrison
UT/ORNL

History and Design

● Prototyping at very start of NWChem project
● Model full application not just kernel
● 80-20 rule – more like 90-10 rule

● GA designed to solve a problem
● Distributing large data structures while supporting

irregular computation
● Entire HF code
● First 2 attempts (Linda-like) worked for kernel but

not the rest of the code

History and Design

● First prototype
● Matrices only
● Put/Get/Acc
● Some collective operations
● Crude sequential and parallel implementations

(Intel Delta ?)

Jarek made GA what it is now

● He immediately took full ownership of GA
● His vision, energy, experience, rigorous C/S

background were essential in making this a
viable platform for NWChem and other apps
● Three P’s – portability, performance, productivity

● At least three complete revisions of the design
and implementation since version-0

● Huge expansion in functionality

Rationale for elements of GA

● Put/Get/Acc
● One-sided access without any implicit/explicit sync
● Acc – huge gain in efficiency and productivity

● Weak consistency model
● Very important for efficiency
● Reflects common algorithm structure

– Data structures usually either read only, or
write/accumulate only

● Sequential consistency important

Rationale for elements of GA

● Memory model – no active messages
● Maps to what compute does – move data
● In that era shared-memory still important and active

messages had very high latency and low portability
● As a consequence, sometimes faster than MPI

– Lighter protocol

– Weaker sync

– Reduced buffering problems, known destination in mem

● Library-based approach
● Portable, requires less C/S effort, essential first step
● Fred knows we begged and pleaded for language funding

Rationale for elements of GA

● Address using application-meaningful indices
● Huge productivity gain – hide partitioned memory
● App. can control and exploit distributions as needed
● Can experiment with multiple distributions and leave

algorithm unchanged

● Array abstractions
● Essential to make the 90% of the code easier to write
● Hides horrific parallel library interfaces
● Motivated by the application

– Other domains need different abstractions

Key design elements

● Distribution of large data structures
● Enable use of aggregate resources

● One-sided memory access
● Enable irregular algorithms and access patterns

● Application specific abstractions (arrays)
● Enable scientist productivity

Initial experience in NWChem

● Expected ~50% of the code to use GA
● But was adopted by the entire code

● Bits still using message passing benefit from the
implied synchronization to manage data flow and
dependencies
● E.g., parallel Fourier transform, linear algebra

algorithms,

● NUMA model
● Much easier to reason about performance
● Must ensure assumptions valid

Issues

● High machine dependence – need co-design
● Every machine has had H/W and/or S/W bugs

– Flow control, progress, corner cases
● MPI 1/2 forums punted on one-sided

● Original version 2D
● nD added ~10yrs ago?

● Original version blocking
● async added ~5yrs ago?
● But current async requires explicit buffer management

(low level)

Issues

● Array abstraction
● Not a good match for all applications
● Leads to “assembly-level” GA programming

● It’s an opaque API
● Like MPI
● Compiler has no knowledge of what is going on
● Highest costs and bug density associated with logic

and interfaces

Issues

● Consider typical application
● Identify which data structures to distribute and

which to replicate
– Hard to change this decision if problem size changes

● Identify which loops provide coarse grain
concurrency
– Hard to change this decision if need more concurrency

● Expensive manual intervention required to
● Re-target code (tera, peta, exa, hybrid, ...)
● Change decisions about data

Issues

● Interoperability – no kitchen sink environment
● Always compatible with MPI
● OpenMP, UPC, co-Array, ?????

● Only 2-levels of memory hierarchy
● Disk arrays might be regarded as third
● Local and global data only

● No awareness of multicore (or hybrid)
● No awareness of physical memory hierarchy
● No aggregation?

What’s changed since 1992?
● Computers

● Massive concurrency and multicore
● Deeper memory hierarchy
● More intelligent NICs (or spare cores)
● Balance of CPU speed and comm. bandwidth
● Latency still in micro-sec range
● Fault tolerance
● Different types of memory (persistent, transactional)

● Consequences
● More outstanding remote references
● Opportunities for different programming models

– Move computation to data

What’s changed since 1992?

● Languages
● C++ now mature, powerful and fast
● Scripting languages
● Charm++, Cilk, HPCS languages

– Different parallel constructs, remote action, virtualization
● PGAS experience

– A step forward for some kernels, but compiler optimization still
very limited

– UPC added active messages to move compute to data
● More experience with different data structures

– E.g., associative arrays

What’s changed since 1992?

● Applications
● Algorithms & data now even more irregular, e.g.,

– Fast multipole (n-trees)
– Multiresolution (n-trees, nested grids, and hash-tables)
– Reduced-scaling many-body (block sparse n-arrays)

● Multidisciplinary applications
– Interoperability is essential

● Broader use of different parallel decomposition
– Task-based (esp. in context of hybrid)
– Object-based (e.g., NAMD)

Going forward

● Who/what will write GA code?
● Humans?
● Code generators?
● DSLs increasingly important

● What are the top 3 problems GA will solve?
● Science
● Productivity

● How does it fit in the ecosystem/toolchain?
● Co-design

MADNESS 2009 19

Multiresolution Adaptive Numerical
Scientific Simulation

Ariana Beste1, George I. Fann1, Robert J. Harrison1,2,
Rebecca Hartman-Baker1, Judy Hill1, Jun Jia1,

1Oak Ridge National Laboratory
2University of Tennessee, Knoxville

in collaboration with

Gregory Beylkin4, Lucas Monzon4,
Martin Mohlenkamp5, and Hideo Sekino6

4University of Colorado
5Ohio University

6Toyohashi Technical University, Japan

harrisonrj@ornl.gov

MADNESS 2009 20

Ariana Beste Hideo Sekino Robert Harrison

Gregory Beylkin

Eduard Valeyev

Judy Hill

George Fann

Paul Sutter
Matt Reuter

Alvaro Vasquez

Jun Jia
Tetsuya Kato
Justus Calvin
J. Pei

Scott Thornton

Rebecca
Hartman-Baker

Nicholas Vence
Takahiro Ii

MADNESS 2009 21

Funding
• MADNESS started as a DOE SciDAC project and the majority of

its support still comes from the DOE
• DOE SciDAC, divisions of Advanced Scientific Computing

Research and Basic Energy Science, under contract DE-AC05-
00OR22725 with Oak Ridge National Laboratory, in part using the
National Center for Computational Sciences.

• DARPA HPCS2: HPCS programming language evaluation
• NSF CHE 0625598: Cyber-infrastructure and Research Facilities:

Chemical Computations on Future High-end Computers
• NSF CNS-0509410: CAS-AES: An integrated framework for

compile-time/run-time support for multi-scale applications on high-
end systems

• NSF OCI-0904972: Computational chemistry and physics beyond
the petascale

MADNESS 2009 22

Outline

• This presentation provides a brief overview of
the who, what, why, and how of MADNESS

– What does it do?
– Why does it advance our abilities?
– How does it work?
– What do we need to fully realize our
potential?

MADNESS 2009 23

What is MADNESS?

• MADNESS is a framwork
– Like NWChem, PETSc, ..

• Frameworks
– Increase productivity; hide complexity
– Interface disciplines
– Capture knowledge
– Open HPC to wider community
– Expensive, communal projects with broad impact

MADNESS 2009 24

What is MADNESS?

• A general purpose numerical environment for reliable
and fast scientific simulation
– Applications already in nuclear physics, chemistry, atomic

physics, material science, with investigations beginning in
climate and fusion.

• A general purpose parallel programming
environment designed for the petascale
– Standard C++ with concepts from Cilk, Charm++, HPCS

languages, with a multi-threaded runtime that dynamically
manages task dependences, scheduling and provides
global data view.

– Compatible by design with existing applications

MADNESS 2009 25

Why MADNESS

• Complexity constrains all our HPC ambitions
– Hardware

• Millions of cores with deep memory hierarchy

– Software
• Crude parallel programming tools with explicit expression and

management of concurrency and data

– Scalable algorithms and math
• Need rapid deployment of the latest and greatest

– Science, physics, theory, ...
• Constantly evolving but can take years to implement

MADNESS 2009 26

Why MADNESS
• MADNESS

– Reduces S/W complexity since programmer not
responsible for managing dependencies, scheduling,
or placement

– Reduces S/W complexity through MATLAB-like level
of composition of scientific problems with guaranteed
speed and precision

– Reduces numerical complexity by enabling solution of
integral instead of differential equations

– Framework makes latest techniques in applied math
and physics available to wide audience

MADNESS 2009 27

MADNESS status on jaguarpf

• Deployed at full scale
– Running production 3D and 4D simulation of

atoms/molecules in intense laser fields (ramping up
to 6D by summer)

– Commencing production simulations of nanoscale
systems for energy storage

• Fully multi-threaded scaling to at least 16 cores
per SMP node
– Custom kernel executes at circa 75% peak
– Circa 50% of time in kernel (=> 37% overall)

MADNESS 2009 28

The math behind the MADNESS

• Discontinuous spectral element basis
– High-order convergence ideally suited for modern

computer technology

• Multi-resolution analysis for fast algorithms
– Sparse representation of many integral operators
– Precision guaranteed through adaptive refinement

• Separated representations of operators and
functions
– Enable efficient computation in many dimensions

MADNESS 2009 29

MADNESS 2009 30

Essential techniques for fast
computation

• Multiresolution

• Low-separation
rank

• Low-operator
rank

V 0⊂V 1⊂⋯⊂V n

V n=V 0V 1−V 0 ⋯V n−V n−1

f  x1, ,xn =∑
l=1

M

σ l∏
i=1

d

f i
 l   xi +O  ε 

∥f i
l 
∥2=1 σ l0

A=∑
μ=1

r

u μσ μ v μ
T+O  ε 

σ μ0 v μ
T v λ=uμ

Tu λ=δμν

MADNESS 2009 31

Separated form for integral operators

• Approach
– Represent the kernel over a finite range as a sum of products

of 1-D operators (often, not always, Gaussian)

– Only need compute 1D transition matrices (X,Y,Z)
– SVD the 1-D operators (low rank away from singularity)
– Apply most efficient choice of low/full rank 1-D operator
– Even better algorithms not yet implemented

T∗f=∫ dsK r−s  f s 

rii',jj',kk'
n,l−l' =∑

μ=0

M

X ii'

n,l x−l' xY jj'

n,l y−l' y Zkk'

n,l z−l' z+O  ε 

MADNESS 2009 32

High-level composition
• Close to the physics

operatorT op = CoulombOperator(k, rlo, thresh);

functionT rho = psi*psi;

double twoe = inner(apply(op,rho),rho);

double pe = 2.0*inner(Vnuc*psi,psi);

double ke = 0.0;

for (int axis=0; axis<3; axis++) {

 functionT dpsi = diff(psi,axis);

 ke += inner(dpsi,dpsi);

}

double energy = ke + pe + twoe;

E=〈ψ∣−
1
2
∇

2+V 〉

ψ+∫ψ 2  x 
1

∣x− y∣
ψ2  y  dxdy

MADNESS 2009 33

MADNESS parallel runtime

MPI Global Arrays ARMCI GPC/GASNET

MADNESS math and numerics

MADNESS applications – chemistry, physics, nuclear, ...

MADNESS architecture

Intel Thread Building Blocks being considered as alternative for multicore

MADNESS 2009 34

Runtime Objectives
 Scalability to 1+M processors ASAP
 Runtime responsible for

 scheduling and placement,
 managing data dependencies,
 hiding latency, and
 Medium to coarse grain concurrency

 Compatible with existing models
 MPI, Global Arrays

 Borrow successful concepts from Cilk, Charm+
+, Python

 Anticipating next gen. languages

MADNESS 2009 35

Why a new runtime
• Because MADNESS computation is very irregular

and dynamic
– Imagine 1000s of independent, dynamically refined

meshes that change every time an operator is applied
(in order to guarantee precision)

• Because we wanted to make MADNESS itself
easier to write not just the applications using it
– We explored implementations with MPI, Global Arrays,

and Charm++ and all were inadequate

• MADNESS is helping drive
– One-sided operations in MPI3, ASCR projects in fault

tolerance, ...

MADNESS 2009 36

Key elements

• Futures for hiding latency and automating
dependency management

• Global names and name spaces
• Non-process centric computing

– One-sided messaging between objects
– Retain place=process for MPI/GA legacy

compatibility
• Dynamic load balancing

– Data redistribution, work stealing, randomization

Futures
 Result of an

asynchronous
computation
– Cilk, Java, HPCLs

 Hide latency due to
communication or
computation

 Management of
dependencies
– Via callbacks

int f(int arg);
ProcessId me, p;

Future<int> r0=task(p, f, 0);
Future<int> r1=task(me, f, r0);

// Work until need result

cout << r0 << r1 << endl;

Process “me” spawns a new task in process “p”
to execute f(0) with the result eventually returned
as the value of future r0. This is used as the argument
of a second task whose execution is deferred until
its argument is assigned. Tasks and futures can
register multiple local or remote callbacks to
express complex and dynamic dependencies.

Global Names

 Objects with global names
with different state in each
process
– C.f. shared[threads]

in UPC; co-Array

 Non-collective constructor;
deferred destructor
– Eliminates synchronization

class A : public WorldObject<A>{
int f(int);

};
ProcessID p;
A a;
Future<int> b = a.task(p,&A::f,0);

A task is sent to the instance of a in process p.
If this has not yet been constructed the message
is stored in a pending queue. Destruction of a
global object is deferred until the next user
synchronization point.

Global Namespaces
 Specialize global names to

containers
– Hash table done
– Arrays, etc., planned

 Replace global pointer
(process+local pointer) with
more powerful concept

 User definable map from keys
to “owner” process

class Index; // Hashable
class Value {

double f(int);
};

WorldContainer<Index,Value> c;
Index i,j; Value v;
c.insert(i,v);
Future<double> r =

c.task(j,&Value::f,666);

Namespaces are a large part of the elegance of Python and success of Charm++ (chares+arrays)

A container is created mapping indices
to values.

A value is inserted into the container.

A task is spawned in the process owning
key j to invoke c[j].f(666).

MADNESS 2009 40

Multi-threaded architecture

RMI Server
(MPI or portals)

Incoming active
messages

Task dequeue

Incoming active
messages

Application
logical main

thread

Outgoing active messages

Work stealingMust augment with cache-aware
algorithms and scheduling

MADNESS 2009 41

Summary

• MADNESS is a general purpose framework for scientific
simulation
– Conceived for the next (not the last) decade

– Makes scientific HPC more productive by reducing various
sources of complexity

– Deploys advanced numerical and C/S methods

• Science applications on top of MADNESS are
separately funded but ...

• MADNESS requires continued support for research,
development and deployment of the enabling C/S and
math on present and future architectures

