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History and Design

● Prototyping at very start of NWChem project
● Model full application not just kernel
● 80-20 rule – more like 90-10 rule

● GA designed to solve a problem
● Distributing large data structures while supporting 

irregular computation
● Entire HF code
● First 2 attempts (Linda-like) worked for kernel but 

not the rest of the code



  

History and Design

● First prototype
● Matrices only
● Put/Get/Acc
● Some collective operations
● Crude sequential and parallel implementations 

(Intel Delta ?)



  

Jarek made GA what it is now

● He immediately took full ownership of GA
● His vision, energy, experience, rigorous C/S 

background were essential in making this a 
viable platform for NWChem and other apps
● Three P’s – portability, performance, productivity

● At least three complete revisions of the design 
and implementation since version-0

● Huge expansion in functionality



  

Rationale for elements of GA

● Put/Get/Acc
● One-sided access without any implicit/explicit sync
● Acc – huge gain in efficiency and productivity

● Weak consistency model
● Very important for efficiency
● Reflects common algorithm structure 

– Data structures usually either read only, or 
write/accumulate only

● Sequential consistency important



  

Rationale for elements of GA

● Memory model – no active messages
● Maps to what compute does – move data
● In that era shared-memory still important and active 

messages had very high latency and low portability
● As a consequence, sometimes faster than MPI

– Lighter protocol

– Weaker sync

– Reduced buffering problems, known destination in mem

● Library-based approach
● Portable, requires less C/S effort, essential first step
● Fred knows we begged and pleaded for language funding



  

Rationale for elements of GA

● Address using application-meaningful indices
● Huge productivity gain – hide partitioned memory
● App. can control and exploit distributions as needed
● Can experiment with multiple distributions and leave 

algorithm unchanged

● Array abstractions
● Essential to make the 90% of the code easier to write
● Hides horrific parallel library interfaces
● Motivated by the application

– Other domains need different abstractions



  

Key design elements 

● Distribution of large data structures
● Enable use of aggregate resources

● One-sided memory access
● Enable irregular algorithms and access patterns

● Application specific abstractions (arrays)
● Enable scientist productivity



  

Initial experience in NWChem

● Expected ~50% of the code to use GA
● But was adopted by the entire code

● Bits still using message passing benefit from the 
implied synchronization to manage data flow and 
dependencies
● E.g., parallel Fourier transform, linear algebra 

algorithms, 

● NUMA model
● Much easier to reason about performance
● Must ensure assumptions valid



  

Issues

● High machine dependence – need co-design
● Every machine has had H/W and/or S/W bugs 

– Flow control, progress, corner cases
● MPI 1/2 forums punted on one-sided

● Original version 2D
● nD added ~10yrs ago?

● Original version blocking
● async added ~5yrs ago?
● But current async requires explicit buffer management 

(low level)



  

Issues

● Array abstraction
● Not a good match for all applications
● Leads to “assembly-level” GA programming

● It’s an opaque API
● Like MPI
● Compiler has no knowledge of what is going on
● Highest costs and bug density associated with logic 

and interfaces



  

Issues

● Consider typical application
● Identify which data structures to distribute and 

which to replicate
– Hard to change this decision if problem size changes

● Identify which loops provide coarse grain 
concurrency
– Hard to change this decision if need more concurrency

● Expensive manual intervention required to 
● Re-target code (tera, peta, exa, hybrid, ...)
● Change decisions about data 



  

Issues

● Interoperability – no kitchen sink environment
● Always compatible with MPI
● OpenMP, UPC, co-Array,  ????? 

● Only 2-levels of memory hierarchy
● Disk arrays might be regarded as third
● Local and global data only

● No awareness of multicore (or hybrid)
● No awareness of physical memory hierarchy
● No aggregation?



  

What’s changed since 1992?
● Computers

● Massive concurrency and multicore 
● Deeper memory hierarchy
● More intelligent NICs (or spare cores)
● Balance of CPU speed and comm. bandwidth
● Latency still in micro-sec range
● Fault tolerance
● Different types of memory (persistent, transactional)

● Consequences
● More outstanding remote references
● Opportunities for different programming models

– Move computation to data



  

What’s changed since 1992?

● Languages
● C++ now mature, powerful and fast
● Scripting languages
● Charm++, Cilk, HPCS languages

– Different parallel constructs, remote action, virtualization 
● PGAS experience

– A step forward for some kernels, but compiler optimization still 
very limited

– UPC added active messages to move compute to data
● More experience with different data structures

– E.g., associative arrays



  

What’s changed since 1992?

● Applications
● Algorithms & data now even more irregular, e.g., 

– Fast multipole (n-trees)
– Multiresolution (n-trees, nested grids, and hash-tables)
– Reduced-scaling many-body (block sparse n-arrays)

● Multidisciplinary applications
– Interoperability is essential

● Broader use of different parallel decomposition
– Task-based (esp. in context of hybrid)
– Object-based (e.g.,  NAMD)



  

Going forward

● Who/what will write GA code?
● Humans?
● Code generators?
● DSLs increasingly important 

● What are the top 3 problems GA  will solve?
● Science
● Productivity

● How does it fit in the ecosystem/toolchain?
● Co-design
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Funding
• MADNESS started as a DOE SciDAC project and the majority of 

its support still comes from the DOE 
• DOE SciDAC, divisions of Advanced Scientific Computing 

Research and Basic Energy Science, under contract DE-AC05-
00OR22725 with Oak Ridge National Laboratory, in part using the 
National Center for Computational Sciences.

• DARPA HPCS2: HPCS programming language evaluation
• NSF CHE 0625598: Cyber-infrastructure and Research Facilities: 

Chemical Computations on Future High-end Computers
• NSF CNS-0509410: CAS-AES: An integrated framework for 

compile-time/run-time support for multi-scale applications on high-
end systems

• NSF OCI-0904972: Computational chemistry and physics beyond 
the petascale
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Outline

• This presentation provides a brief overview of 
the who, what, why, and how of MADNESS

– What does it do?
– Why does it advance our abilities?
– How does it work?
– What do we need to fully realize our
potential?
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What is MADNESS?

• MADNESS is a framwork
– Like NWChem, PETSc, ..

• Frameworks
– Increase productivity; hide complexity
– Interface disciplines
– Capture knowledge
– Open HPC to wider community
– Expensive, communal projects with broad impact
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What is MADNESS?

• A general purpose numerical environment for reliable 
and fast scientific simulation
– Applications already in nuclear physics, chemistry, atomic 

physics, material science, with investigations beginning in 
climate and fusion.

• A general purpose parallel programming 
environment designed for the petascale
– Standard C++ with concepts from Cilk, Charm++, HPCS 

languages, with a multi-threaded runtime that dynamically 
manages task dependences, scheduling and provides 
global data view.

– Compatible by design with existing applications
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Why MADNESS

• Complexity constrains all our HPC ambitions
– Hardware

• Millions of cores with deep memory hierarchy

– Software
• Crude parallel programming tools with explicit expression and 

management of concurrency and data

– Scalable algorithms and math
• Need rapid deployment of the latest and greatest

– Science, physics, theory, ...
• Constantly evolving but can take years to implement 
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Why MADNESS
• MADNESS

– Reduces S/W complexity since programmer not 
responsible for managing dependencies, scheduling, 
or placement

– Reduces S/W complexity through MATLAB-like level 
of composition of scientific problems with guaranteed 
speed and precision

– Reduces numerical complexity by enabling solution of 
integral instead of differential equations

– Framework makes latest techniques in applied math 
and physics available to wide audience 
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MADNESS status on jaguarpf

• Deployed at full scale
– Running production 3D and 4D simulation of 

atoms/molecules in intense laser fields (ramping up 
to 6D by summer)

– Commencing production simulations of nanoscale 
systems for energy storage 

• Fully multi-threaded scaling to at least 16 cores 
per SMP node
– Custom kernel executes at circa 75% peak
– Circa 50% of time in kernel (=> 37% overall)
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The math behind the MADNESS

• Discontinuous spectral element basis
– High-order convergence ideally suited for modern 

computer technology

• Multi-resolution analysis for fast algorithms
– Sparse representation of many integral operators
– Precision guaranteed through adaptive refinement

• Separated representations of operators and 
functions
– Enable efficient computation in many dimensions 
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Essential techniques for fast 
computation 

• Multiresolution

• Low-separation 
rank

• Low-operator 
rank

V 0⊂V 1⊂⋯⊂V n

V n=V 0V 1−V 0 ⋯V n−V n−1
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Separated form for integral operators

• Approach
– Represent the kernel over a finite range as a sum of products 

of 1-D operators (often, not always, Gaussian)

– Only need compute 1D transition matrices (X,Y,Z)
– SVD the 1-D operators (low rank away from singularity)
– Apply most efficient choice of low/full rank 1-D operator
– Even better algorithms not yet implemented

T∗f=∫ dsK r−s  f s 

rii',jj',kk'
n,l−l' =∑

μ=0

M

X ii'

n,l x−l' xY jj'

n,l y−l' y Zkk'

n,l z−l' z+O  ε 
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High-level composition
• Close to the physics
    

operatorT op = CoulombOperator(k, rlo, thresh);

functionT rho = psi*psi;

double twoe = inner(apply(op,rho),rho);

double pe = 2.0*inner(Vnuc*psi,psi);

double ke = 0.0;

for (int axis=0; axis<3; axis++) {

    functionT dpsi = diff(psi,axis);

    ke += inner(dpsi,dpsi);

}

double energy = ke + pe + twoe;

E=〈ψ∣−
1
2
∇

2+V 〉

ψ+∫ψ 2  x 
1

∣x− y∣
ψ2  y  dxdy
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MADNESS parallel runtime

MPI Global Arrays ARMCI GPC/GASNET

MADNESS math and numerics

MADNESS applications – chemistry, physics, nuclear, ...

MADNESS architecture

Intel Thread Building Blocks being considered as alternative for multicore
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Runtime Objectives
 Scalability to 1+M processors ASAP
 Runtime responsible for 

 scheduling and placement, 
 managing data dependencies, 
 hiding latency, and
 Medium to coarse grain concurrency

 Compatible with existing models
 MPI, Global Arrays

 Borrow successful concepts from Cilk, Charm+
+, Python

 Anticipating next gen. languages
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Why a new runtime
• Because MADNESS computation is very irregular 

and dynamic
– Imagine 1000s of independent, dynamically refined 

meshes that change every time an operator is applied 
(in order to guarantee precision)

• Because we wanted to make MADNESS itself 
easier to write not just the applications using it
– We explored implementations with MPI, Global Arrays, 

and Charm++ and all were inadequate

• MADNESS is helping drive
– One-sided operations in MPI3, ASCR projects in fault 

tolerance, ...
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Key elements

• Futures for hiding latency and automating 
dependency management

• Global names and name spaces
• Non-process centric computing

– One-sided messaging between objects
– Retain place=process for MPI/GA legacy 

compatibility
• Dynamic load balancing

– Data redistribution, work stealing, randomization



Futures
 Result of an 

asynchronous 
computation
– Cilk, Java, HPCLs

 Hide latency due to 
communication or 
computation

 Management of 
dependencies
– Via callbacks

int f(int arg);
ProcessId me, p;

Future<int> r0=task(p, f, 0);
Future<int> r1=task(me, f, r0);

// Work until need result

cout << r0 << r1 << endl;

Process “me” spawns a new task in process “p”
to execute f(0) with the result eventually returned
as the value of future r0.  This is used as the argument
of a second task whose execution is deferred until 
its argument is assigned.  Tasks and futures can 
register multiple local or remote callbacks to 
express complex  and dynamic dependencies.



Global Names

 Objects with global names 
with different state in each 
process
– C.f. shared[threads] 

in UPC; co-Array

 Non-collective constructor; 
deferred destructor
– Eliminates synchronization

class A : public WorldObject<A>{
int f(int);

};
ProcessID p;
A a;
Future<int> b = a.task(p,&A::f,0);

A task is sent to the instance of a in process p.
If this has not yet been constructed the message
is stored in a pending queue.  Destruction of a
global object is deferred until the next user 
synchronization point.



Global Namespaces
 Specialize global names to 

containers
– Hash table done
– Arrays, etc., planned  

 Replace global pointer 
(process+local pointer) with 
more powerful concept

 User definable map from keys 
to “owner” process

class Index;  // Hashable
class Value {

double f(int);
};

WorldContainer<Index,Value> c;
Index i,j;  Value v;
c.insert(i,v);
Future<double> r = 

c.task(j,&Value::f,666);

Namespaces are a large part of the elegance of Python and success of Charm++ (chares+arrays)

A container is created mapping indices 
to values.

A value is inserted into the container.

A task is spawned in the process owning 
key j to invoke c[j].f(666).
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Multi-threaded architecture

RMI Server
(MPI or portals)

Incoming active
messages

Task dequeue

Incoming active
messages

Application
logical main

thread

Outgoing active messages

Work stealingMust augment with cache-aware 
algorithms and scheduling
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Summary

• MADNESS is a general purpose framework for scientific 
simulation 
– Conceived for the next (not the last) decade

– Makes scientific HPC more productive by reducing various 
sources of complexity 

– Deploys advanced numerical and C/S methods

• Science applications on top of MADNESS are 
separately funded but ...

• MADNESS requires continued support for research, 
development and deployment of the enabling C/S and 
math on present and future architectures


