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Focus areas

>

Development of scalable high-accuracy methods for
molecular systems

m Accurate coupled-cluster (CC) methods for excited state

m Interaction of light with matter: solar energy conversion &
energy storage processes

Upscale time scales in molecular simulations
m Development of multilevel parareal algorithms
m from pico- to nano/micro-second molecular dynamics
simulations
Development of multiscale algorithms

m Integration of high-level ab-initio methods with Multi-scale Multi-
physics (MS/MP) approaches
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Exact solution of Schrodinger equation

Weyl formula (dimensionality of full Cl space) -
exact solution of Schrodinger equation

n+1
N/2+S+1

f(N,S)=2541 Nt
N/2-S

n+1

H|Y)=E[Y)

N — total number of orbitals
N — total number of correlated electrons

S - spin of a given electronic state

C, molecule :
12 electrons, 100 orbitals:

#FCI config. ~ 10" \g/
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Approximate WF methods

» Hartree-Fock method

» Truncated configuration interaction expansions
m Cl-n
» Perturbative methods (MBPT-n)

» Coupled Cluster formalisms
m CCSD/EOMCCSD
m CCSD(T)/CR-EOMCCSD(T)

» Multireference formulations
m CASSCF
m MRCI
m CASPT?

= MRMBPT-n \g?/
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CC methods

CC methods can be universally applied
across energy and spatial scales!

Bartlett, Musial Rev. Mod. Phys. (2007)

Dean, Hjorth-Jensen, Phys. Rev. B (2004)

Kowalski, Dean, Hjorth-Jensen, Papenbrock, Piecuch,
Phys. Rev. Lett. (2004)

Molecule

Neutron

Atomic nucleus %
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CC implementations

» ACES Il
» DALTON
» GAMESS
» MOLPRO
» NWCHEM
» PQS

(parallel)

(serial)

(CCSD/CCSD(T) — parallel)
(parallel)

(parallel)

(CCSD/CCSD(T) — parallel)
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Coupled Cluster (CC) and Equation-of-

Motion Coupled Cluster Methods

/ cluster operator

¥) =e'|@)—

reference function (HF determinant)

‘\PK>:I|?K9T‘CD>

AR, | ®) = E R |®)| [T e e

v
“excitation” operator
Method Numerical Size of the eigenvalue
complexity problem to be solved
EOMCCSD N6 ~N2+N4
(singles & doubles)
CR-EOMCCSD(T) N’ ~N2+N4
(perturbative triples)
EOMCCSDT N8 ~ N2+N4+N6

(singles & doubles & triples)



Tensor Contraction Engine (TCE)

» Highly parallel codes are needed in '/ yy\/ " i
order to apply the CC theories to Vi o
larger molecular systems Lo Loy S

» Symbolic algebra systems for
coding complicated tensor
expressions: Tensor Contraction
Engine (TCE) + VT Ly

mn i
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Parallel performance

Parallel structure of the TCE CC codes

Tile structure:

o £ o i
I NN |
| P | | | | | | | | | | |
St S2 ... S1 S22 ... S S22 S S22
Occupied spinorbitals unccupied spinorbitals

Tensor sftructure:

—
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Triples corrections to the EOMCCSD

excitation energies

» Correlation effects due to the collective excitations of
three electrons are very important in describing excited
states

» Method of Moments of Coupled Cluster Equations
(MMCC)

m Non-iterative corrections can be expressed in terms non-
zero components of the Schrodinger equation (moments)

B Rigorous way of introducing higher order correlation effects

<‘PK ‘QgM K 3‘ CD> CR-EOMCCSD(T) correction
o (T) = — ’ (Kowalski and Piecuch JCP 2004)
<TK e’ 2(RK,O_'_RK,l_I_RK,Z)‘(I)>
CR—EOMCCSD(T EOMCCSD , <CR—EOMCCSD(T
Wy "M = o + Oy ()

—
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Diagrammatica

? | / holes

ﬁ \/_ _——— \Lﬂgm]\ particles
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Diagrammatica

3.) Algebraic expression that represent the
conftribution of this process to the excited-state
k | C i b wavefunction can be derived:

Y %Akj/i (RK’T)

/ba cm

. 2.) hole "m” interacts with other particles
! a  and holes producing hole "k and particle
“c"; hole "m” can change the identity to

(1A

J

1.) “correlation interaction” produces
holes “i" & “m" and particles “a” & “b"

o
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Parallel performance

CCSD(T)

Time

72
2391

N 1518

1000

1000 10000 100000

Number of cores

An example of the scalability of the friples part of the CR-
EOMCCSD(T) approach for GFPC described by the cc-pVTZ basis set
(648 basis set functions). Timings were determined from calculations
on the Franklin Cray-XT4 computer at NERSC using 1024, 16384,
20000, 24572, and 34008 cores).

o
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Parallel performance

7000

\ --CR-EOMCCSD(T) - triples part
6000

-#-ldeal scaling
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An example of the scalability of the ftriples part of the CR-EOMCCSD(T)
approach for the PIBI-f-coronene molecule described by the Ahlrichs-VTZ
basis set (786 basis set functions). Timings were determined from calculations on

the Jaguar Cray-XT5 computer at ORNL.
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Parallel performance

» Major factors determining parallel performance of the (T) part
GA !l

New antisymmetrization of 6-dimensional tensors
Improved local memory management

Possibility of controlling volume to surface ratio in the
calculations (scalability can be achieved also for smaller
systems)

m Slicing 6-dimensional tensors (volume/surface ratio can be
made arbitrarily large) in the CR-EOMCCSD(T) code

—
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Parallel performance

» lterative CCSD/EOMCCSD methods:

B ga_get, ga put, ga_acc, dgemm
® very intensive communication pattern
m possible problems with load balancing

» Non-iterative (T) methods

® ga _get, dgemm

— 4-index eomccsd Bl CR-EOMCCSD(T)
Fock (N3) trans(?\lr%\atlon (NG) (N7)

"
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Parallel performance - iterative methods

(Krishnamoorthy & Kowalski)

» Alternative task schedulers (independent counters)

® use “global task pool”
B Improve load balancing

m reduce the number of synchronization steps to absolute
minimum (from 80 to 4 in the EOMCCSD case)

m larger tiles can be effectively used

P1

= B E Bl o cws
= ‘ |- -| LAYER 2

|
o ' '
P1 P4 P6 LAYER '|

P6
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Parallel performance — iterative methods

Bacteriochlorophyll a (6-311G/733 bsf/no symmetry)

——CCSD

U1V D eration #1:-depender

intermediates are calculated)

== EOQ M D (n-th iteration, r

2592
7
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7 1780
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Time per iteration (sec.)
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Number of cores 37
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lllustrative examples of large-scale calculations —

components of light harvesting systems

1L, state POL1 basis set
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lllustrative examples of large-scale calculations —
components of light harvesting systems
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Figure 1. Absorption spectra in chloroform. meso-(9-anthryl}porphyrin Sc (a) has a typical porphyrin spectrum, whereas the spectra of the %
f.meso doubly fused porphyrin 2 (b) and the S.mesoJ triply fused porphyrin ¢ (c) are distorted and red-shifted. ific Northwest
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lllustrative examples of large-scale calculations —
components of light harvesting systems

ﬂ 1 T T T T L T T T
400 500 600 700 8OO 900

3 e

ZnP H2L &H-1=> L+1]

H-1 = L & HDL+1

/nP-f-anthracene CR-EOMCCSD(T) 2.25eV
Expf. 2.28 eV

H>L »
CR-EOMCCSD(T) 1.79 eV Pacific Northwest
Expt. 1.71 eV NATIONAL LABORATORY
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lllustrative examples of large-scale calculations —
components of light harvesting systems

H?L CR-EOMCCSD(T) 2.32 eV

H-12L

Hore7 CREOMCCSD(T) 1.86 eV

P1B1-f-coronene

&

H9L CR-EOMCCSD(T) 1.78 eV H9L CR-EOMCCSD(T) 1.36eV.-
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lllustrative examples of large-scale calculations —

modeling charge transfer processes in open-shell systems
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FIG. 2. SC-NEVPT2(can), SC-NEVPT3(can), and CASPT2(can) (no level
shift) PES of the *A,(1) and ’A,(2) states of the spiro cation. All the curves
arc shifted in order to have the two C,, minima at zero cnergy. Full lines and
“+" points, NEVPT2(can) cnergies; dashed lines and “X" points,
CASPT2(can) cnergics; dotted lines and “#™ points, NEVPT3(can) encrgies.
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Reduced cost CR-EOMCCSD(T) methods

» Active-space CR-EOMCCSD(T) approach

m Active space can be defined by orbitals with orbital energies falling into a
predefined energy interval [«,[]

m Significant reduction of the numerical cost associated with calculating (T)
correction: N7 => N__°N? : Applicable to large molecular systems

Double excitations are allowed Active-space CR-EOMCCSD(T) correction
only within the active space
() 5. (t) = (Wi |AsM .o P)
H K - T, +t
Tl, t2 <‘{] ‘e 1+2(RKO+RK1+rK,2)‘®>
q CDIABC CI)IABC
RK,l’ I 2 .A<JB<K KPR
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Reduced cost CR-EOMCCSD(T) methods

CASPT2 1.66 1.67
cc-pVDZ
CAM-B3LYP 2.12 2.14

cc-pVDZ (942 bsf)

EOMCCSD 2.13 2.14

EOMCCSd[-1.0,1.5] 2.19 2.20

CR-EOMCCSA()[-1.0,15]  1.97 1.98

CR-EOMCCSD(T)- 1.91 1.92
> best estimate

o
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Correlation effects in the limit of large number of

correlated particles

N

~=CR-EOMCCSD(T)

6
ut_l 0.1
>
0.05

Errors of the EOMCCSD (blue) and
EOMCCSD(T)/active-space CR-EOMCCSD(T)

experimental data.

the CR-
(green)

vertical excitation energies  with respect to the \g?/
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Multiscale CC approaches: modeling

experiments

110: Ti100 4 (Zo) 6o

50 Active-space EOMCCSD method
1 (2.5%107 doubly excited cluster amplitudes)
40 =+
& TiO, EOMCCSd: 3.69 eV
30 | -+ N-Doped TiO, EOMCCSd: 2.51 eV
ﬁg“ 400 correlated electrons !
£ 20}
: |
% Active virtual orbitals
@
® A ¢ sl
E 0o b _J ctive occuple orpbitals
£
O
_1D -
_2[) - ——
-3.0
Govind, Sushko, Hess, Valiev, Kowalski, Chem. Phys. Lett. 470, 353 (2009) - 7
Govind, Rousseau, Andersen, Kowalski, MRS Proceedings (2010) Pac'ﬂ,%.&?{{?ggﬁggm
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Towards future computer architectures

(Villa,Krishnamoorthy, Kowalski)

» The CCSD(T)/Reg-CCSD(T) codes have been rewritten
In order to take advantage of GPGPU accelerators

» Preliminary tests show very good scalability of the most
expensive N’ part of the CCSD(T) approach

~&—Timings of the (T) Part of Reg-CCSD(T) Method

on SPIRO data
5500
5000 \
@ 4500
©
S 4000 AN
3, 3500 \\
[
£ 3000 s
= 2500
2000 T .
32 48 62
Number of Nodes

=& Speedup of GPU over CPU of the (T) Part of Reg-
CCSD(T) Method on URACIL data

10
9
8 Wi
7 v
Q 6
3 5
® 4
8 31~
2
1
0

10 12 14 16 18 20 21
Tile Size

o
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Concluding remarks

vy

Significant progress in scalability of the most computationally intensive parts
of the CC codes:

m From 1K (before initiative) to 120K
New parallel models for the iterative methods: CCSD & EOMCCSD
GPU implementation of the CCSD(T) approach
New theoretical models for excited-state processes:

® New models for electron correlation effects in excited states

m Active-space EOMCC methods — reduced numerical complexity

m Effective Hamiltonian EOMCC formalisms — large number of excited
states can be studied

New research areas
m Light harvesting systems — organic photovoltaic materials
m Localized excited states in solids
m Interaction of biological systems with radiation \%/
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