
Scalable Performance
Diagnostics and Feedback for
Massively Parallel Computers

Sriram Krishnamoorthy Robert Adolf

Khushbu Agarwal Jeffrey Daily

Chandrika Sivaramakrishnan

Extreme Scale Computing Initiative

March 18, 2011

Motivation

Understand application behavior

Near-neighbor vs longer range communication, etc.

Direct optimizations

Topology mapping, connection management, etc.

Identify performance bottlenecks

Late-receiver, load imbalance, contention, etc.

Application replay

Post-analysis for performance bottlenecks

Evaluate impact of runtime optimizations

Expected performance on future systems

Performance prediction

2

Problem Statement

Develop tools/techniques for

Application profile/trace collection

Performance analysis

Performance feedback

Context: ARMCI/GA

Focus on communication behavior

Used in applications in this initiative

3

Performance Tuning Process

4

Research Elements

Scalable trace compression

ARMCI support in TAU

SCALASCA extensions for ARMCI

Application evaluation

Customized profiling

5

Communication Trace Compression

Ordered log of operations

Trace size depends on:

Num. comm. operations per process

Num. of processes

Eg., an alltoallv cost increases as O(p2)

Can get large

GigaBytes (even TeraBytes)

Research into file formats and seekability

Challenge: Traces of reasonable size

6

Trace Compression Problem

Given

A sequence of tuples

Each element: character in an alphabet

we consider the integer alphabet

Ignore time stamps

Different characteristics

Existing schemes can be used (ICS‟08)

Objective: Compress sequence without loss

7

Overall Algorithm

8

…

Sequitur merge

Some Recent Results – Trace File Sizes

Name 32 64 128 256 512 1024 2048 4096 8192

NAS CG 2.3K 4.4K 7.9K 32K 69K 133K 289K

NAS SP 4.8K 7.8K 16K 39K 60K 142K 280K 592K 1.2M

SWEEP3D 1.8K 1.8K 1.9K 1.9K 1.9K 1.9K 1.9K 1.9K 1.9K

UMT 5.8K 15K 36K 252K 1.3M 5.2M 22M 72M

POP 23K 32K 58K 139K 602K 877K 1.6M

LAMMPS 81K 165K 293K 529K 958K 2M 4.4M 9.1M 17M

9

(Detailed results on memory and runtime overhead in publication in CCGrid‟10)

Discussion

Lossless compression limited by information complexity in
application

Alltoallv, load balancing, etc.

Approaches to tackling the problem

Approximation: bytes sent, etc.

Isolation: the non-scalable portion has a small constant factor

Our approach: merges identical patterns across
processes

Effectively an “and” scheme

Complements existing approaches

Scalatrace merges differences (“or” scheme)

10

Research Elements

Scalable trace compression

ARMCI support in TAU

SCALASCA extensions for ARMCI

Application evaluation

Customized profiling

11

TAU (Tuning and Analysis Utilities)

Tool for parallel performance analysis and tuning

Multiple parallel programming paradigms

All major HPC hardware platforms and OS

Several languages and compilers

Instrumentation at source, library, and binary code levels

Profiling and tracing

Interoperates with PAPI, DyninstAPI, Vampir, and
Scalasca

Integrated in the CCA framework and Eclipse PTP

12

ARMCI Support in TAU

13

Development meeting at U. Oregon with TAU team

ARMCI wrapper interposition library

Map ARMCI events to MPI events in some cases

Work Progress

Scalable trace compression

ARMCI support in TAU

SCALASCA extensions for ARMCI

Application evaluation

Customized profiling

14

SCALASCA (Scalable Performance Analysis
of Large-Scale Applications)

A scalable profiling and tracing tool

Some capabilities similar to TAU

Focus: Analysis of performance behavior

Incremental analysis of profiles

Analysis of concurrent behavior through tracing

Support to detect performance patterns

Late sender, load imbalance, etc. for MPI

Develop support to profile and trace ARMCI/GA

Develop performance patterns for ARMCI/GA

15

ARMCI Support in SCALASCA

16

SCALASCA version that can trace and profile ARMCI with MPI

Works seamlessly with MPI support in SCALASCA

Continuing work on development of performance patterns

Work Progress

Scalable trace compression

ARMCI support in TAU

SCALASCA extensions for ARMCI

Application evaluation

Customized profiling

17

Application Evaluation – NWChem CCSD(T)

The TAU implementation was used to evaluate NWChem

CCSD(T) method

(H2O)4 aug-ccpvtz basis set

Modest problem size to identify behavior at scale

Infiniband cluster and BG/P

Evaluated

Cost components with increase in process count

Effect of #cores used and pinning local buffers

Behavior on different machines

with very different ARMCI implementations

18

CCSD(T) on Infiniband Cluster – Scaling

19

7-cores per node; pinned local buffers

MPI Barrier time a big factor (load imbalance)

Waiting on communication showing up at scale

Other interesting features

CCSD(T) on Infiniband Cluster – Relatime
Times

20

Most unscalable parts – MPI_Barrier() and

waiting on communication

CCSD(T) on BG/P

21

MPI_Barrier still not scalable (load imbalance)

Daxpy consumes significant time

Waiting on communication

Other costs grows as percentage of time

Discussion

Different behavior on different platforms

Identified non-scalable components

Communication

Load imbalance

Some non-communication routines in NWChem

Quantified load imbalance anticipated by Karol Kowalski

Work underway to tackle load imbalance

22

Research Elements

Scalable trace compression

ARMCI support in TAU

SCALASCA extensions for ARMCI

Application evaluation

Customized profiling

23

Wrapper Generator

Initial implementation in python

Multi-pass generator

Gained experience with use cases: wrappers for

Default (included refactoring ARMCI)

Profiling, thread-safety, integration with TAU

MPI wrapper use cases using mpich wrappergen

Logs, counts, tracing

Experience with SCALSCA was valuable

24

Wrapper Generator (Contd.)

Developed a language-based generator

ANTLR+python

High-level primitives

Sets, map, etc.

Attributes rather than code wrappers

Flexible composition of attributes

Working through use cases in the new generator

25

${attribute "ncalls" type("int") init("0") set(SET_ALL) }$

${call}$

if(is_init && ${var "mpi_depth"}$==1)

${var auto "function_name"}$_ncalls++;

${end}$

High-level User Interface

Wrapper generator inserts probes

Specific instrumentation

Objective: Declarative specification of profiling

SQL based interface

Compiled into wrapper generator input

Status:

Identify use cases through SQL post-processing

Specify output of existing tools

26

select count(*) where fn in set(“MPI_*”);

Research Outcomes

Improved support for profiling in GA/ARMCI

Weak bindings for GA and ARMCI

Initial support for different wrappers

Factor out profiling support that is mixed into GA/ARMCI code

Collaboration with tool development communities

Visited U. Oregon to work with TAU team

TAU now fully supports ARMCI

Continuing discussion on GA support

Ongoing collaboration with SCALASCA team

Support to be made part of regular release

27

Research Outcomes (Contd.)

Workload characterization

Fish for performance bottlenecks

Tutorial on using TAU to profile application codes

Teach „em to fish

Already begun fixing bottlenecks identified by this project

Improved scheduling in iterative coupled cluster (NWChem)

28

Publications

“Scalable communication trace compression”, Sriram
Krishnamoorthy and Khushbu Agarwal. The 10th
IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing

“NWChem Workload Characterization Using the TAU
Performance System”, (under submission)

(Submissions on work relating SCALASCA and
improvements to NWChem under preparation)

29

