
Performance Feedback Using
TAU

Jeff Daily (jeff.daily@pnl.gov)

Sriram Krishnamoorthy (sriram@pnl.gov)

(with help from Sameer Shende, OU)

1

Motivating You

Prescriptions for profiling using TAU

Not a manual or a full course

They can be found online at TAU website

We show common scenarios

Changes to use TAU

Hint at application architecture:

Makefile structure

Static vs shared libraries, etc.

Help us understand what you need

Stock builds of TAU on our systems for most needs?

2

Take Home Message

There are alternatives to print statements

TAU is useful

It satisfies many of our needs

And a whole lot more

It can be used

Complicated, but subsets are sufficient

We know as much about TAU as you do

3

TAU Performance System

http://tau.uoregon.edu/

Multi-level performance instrumentation

Multi-language automatic source instrumentation

Flexible and configurable performance measurement

Widely-ported parallel performance profiling system

Computer system architectures and operating systems

Different programming languages and compilers

Support for multiple parallel programming paradigms

Multi-threading, message passing, mixed-mode, hybrid

Integration in complex software, systems, applications

4

http://tau.uoregon.edu/pdt.tgz

What is TAU?

A performance evaluation tool

Supports parallel profiling and tracing

Profiling : how much (total) time was spent in each routine

Tracing : when the events take place in each process along a timeline

Uses a package called PDT for automatic source code
instrumentation

Profiling and tracing can measure time & hardware performance
counters

Can automatically instrument your source code (routines, loops, I/O,
memory, phases, etc.)

Runs on all HPC platforms and it is free (BSD style license)

Has instrumentation, measurement and analysis tools

paraprof is TAU‟s 3D profile browser

To use TAU‟s automatic source instrumentation, you need to set a
couple of environment variables and substitute the name of your
compiler with a TAU shell script

5

TAU Instrumentation Approach

Based on direct performance observation

Direct instrumentation of program (system) code (probes)

Instrumentation invokes performance measurement

Event measurement: performance data, meta-data, context

Support for standard program events

Routines, classes and templates

Statement-level blocks and loops

Begin/End events (Interval events)

Support for user-defined events

Begin/End events specified by user

Atomic events (e.g., size of memory allocated/freed)

Flexible selection of event statistics

Provides static events and dynamic events

6

TAU Performance System Components
TAU Architecture Program Analysis

Parallel Profile Analysis

P
D

T
P

er
fD

M
F

P
a

ra
P

ro
f

Performance Data Mining

Performance Monitoring

TA
U

o
ve

rS
u

p
er

m
o

n

PerfExplorer

Bottom-line

TAU supports instrumentation at various levels

Many ways to do the same thing

Eg.: Source code instrumentation using the compiler or the
PDT

Lots of components

We focus on:

Getting you started

Show you where to find more information

8

inclusive

duration

exclusive

duration

int foo()

{

int a;

a = a + 1;

bar();

a = a + 1;

return a;

}

Inclusive and Exclusive Profiles

Performance with respect to code regions

Exclusive measurements for region only

Inclusive measurements includes child regions

9

Interval Events, Atomic Events in TAU

10

Interval event

e.g., routines

(start/stop)

Atomic events

(trigger with

value)

% export TAU_CALLPATH_DEPTH=0

% export TAU_TRACK_HEAP=1

What you need to install TAU

http://www.cs.uoregon.edu/research/tau/downloa
ds.php

Download latest pdt and tau from this page:

http://tau.uoregon.edu/pdt.tgz

http://tau.uoregon.edu/tau.tgz

PDT – Program Database Toolkit

Used for source code Instrumentation

TAU needs this installed in advance

11

http://www.cs.uoregon.edu/research/tau/downloads.php
http://www.cs.uoregon.edu/research/tau/downloads.php
http://tau.uoregon.edu/pdt.tgz
http://tau.uoregon.edu/tau.tgz

Installing PDT

% tar xvzf pdt.tgz

% cd pdt… #the pdt directory just created

% ./configure #no VPATH build

% make install #no separate make

PDT is installed in the current directory

12

Installing TAU

% tar xvzf tau.tgz

% cd tau… #the tau directory just extracted

% ./configure -pdt=<path to pdt> -mpi -
armci=<path to build directory>

TAU looks for lib/ and include/ at the -armci
path

Build GA with shared libs for TAU interposition

Caveat: Minor fix to current TAU to work with
GA 5.0. In TAU‟s trunk, should get into next
patch

13

Paraprof

GUI to view performance information

Part of the TAU build

Assuming you have Java setup

In path, set JAVA_HOME

Alternatively, install tau+paraprof in your local machine

% paraprof --pack app.ppk

% #Move app.pack to local machine

% paraprof app.ppk #to view the profiles

14

Instrumentation Techniques

Static instrumentation

Program instrumented prior to execution

Dynamic instrumentation

Program instrumented at runtime

Manual and automatic mechanisms

We focus on:
Source code instrumentation

Instrumentation through library interposition

Source Code Instrumentation

Choose an appropriate TAU stub makefile in <arch>/lib:
% #setup TAU‟s bin directory in your PATH

% #set TAU_ROOT to be base of your install

% export TAU_MAKEFILE=$TAU_ROOT/lib/Makefile.tau-mpi-pdt #pick the right makefile for your
build

% export TAU_OPTIONS=„-optVerbose …‟ (see tau_compiler.sh -help)

Use tau_f90.sh, tau_cxx.sh or tau_cc.sh as Fortran, C++ or C
compilers:

% mpif90 foo.f90

changes to
% tau_f90.sh foo.f90

TAU uses different makefiles for different configurations
If you use only one instrumentation configuration, there should be only one makefile

Our build created: Makefile.tau-mpi-pdt

Execute application and analyze performance data:
% pprof (for text based profile display)

% paraprof (for GUI)

16

PDT Instrumentation Options

http://www.cs.uoregon.edu/research/tau/docs/ne
wguide/re01.html

What you need for starters:

% export TAU_OPTIONS=“-optPreProcess”

Runs .F and .F90 files through pre-processor

TAU output by default ends up in working dir

% export TAU_PROFILE_DIR=“…” #a diff. path

17

http://www.cs.uoregon.edu/research/tau/docs/newguide/re01.html
http://www.cs.uoregon.edu/research/tau/docs/newguide/re01.html

Instrumented Sources

And you do not need library interposition

For MPI, ARMCI, etc.

% export
LD_LIBRARY_PATH=$(TAU_ROOT)/<arch>/lib:$LD_LIBRARY_PATH

Run your code as usual

mpirun, mpiexec , …

18

Library Interposition

Working even with uninstrumented sources

Works on dynamic executables

Substitutes I/O, MPI, and memory allocation/deallocation
routines with instrumented calls

Interval events (e.g., time spent in write())

Atomic events (e.g., how much memory was allocated)

Measure I/O and memory usage

19

Running with tau_exec

Uninstrumented execution

% mpirun –np 256 ./a.out

Track MPI performance

% mpirun –np 256 tau_exec ./a.out

Track I/O and MPI performance (MPI enabled by default)

% mpirun –np 256 tau_exec -io ./a.out

Track memory operations

% setenv TAU_TRACK_MEMORY_LEAKS 1

% mpirun –np 256 tau_exec -memory ./a.out

Track I/O performance and memory operations

% mpirun –np 256 tau_exec -io -memory ./a.out

Track GPGPU operations

% mpirun –np 256 tau_exec -cuda ./a.out

Track MPI and ARMCI performance

% mpirun –np 256 tau_exec -armci ./a.out
20

Environment Variable Options

21

Environment Variable Default Description

TAU_TRACE 0 Setting to 1 turns on tracing

TAU_CALLPATH 0 Setting to 1 turns on callpath profiling

TAU_TRACK_MEMORY_LEAKS 0 Setting to 1 turns on leak detection (for use with tau_exec –memory)

TAU_TRACK_HEAP or
TAU_TRACK_HEADROOM

0 Setting to 1 turns on tracking heap memory/headroom at routine entry & exit
using context events (e.g., Heap at Entry: main=>foo=>bar)

TAU_CALLPATH_DEPTH 2 Specifies depth of callpath. Setting to 0 generates no callpath or routine
information, setting to 1 generates flat profile and context events have just
parent information (e.g., Heap Entry: foo)

TAU_SYNCHRONIZE_CLOCKS 1 Synchronize clocks across nodes to correct timestamps in traces

TAU_COMM_MATRIX 0 Setting to 1 generates communication matrix display using context events

TAU_THROTTLE 1 Setting to 0 turns off throttling. Enabled by default to remove instrumentation
in lightweight routines that are called frequently

TAU_THROTTLE_NUMCALLS 100000 Specifies the number of calls before testing for throttling

TAU_THROTTLE_PERCALL 10 Specifies value in microseconds. Throttle a routine if it is called over 100000
times and takes less than 10 usec of inclusive time per call

TAU_COMPENSATE 0 Setting to 1 enables runtime compensation of instrumentation overhead

TAU_PROFILE_FORMAT Profile Setting to “merged” generates a single file. “snapshot” generates xml format

TAU_METRICS TIME Setting to a comma separted list generates other metrics. (e.g.,
TIME:linuxtimers:PAPI_FP_OPS:PAPI_NATIVE_<event>)

Example: Lennard Jones

GA example

global/examples/lennard-jones

No source code instrumentation

GA 5.0 build with –enable-shared in configure

% mpirun –np 8 tau_exec -armci ./lennard.x

% paraprof& #in current directory

Run on a local workstation

Not representative of parallel performance

22

Lennard Jones: Default View

23

Lennard Jones Flat Profile

24

Lennard Jones: Other Views

25

PerfExplorer

Analysis across application runs

Short (somewhat simplistic) guide:

http://www.cs.uoregon.edu/research/tau/docs/newguide/bk0
1ch06s07.html

Outline:

Install a database

install perfexplorer

Load profile into the database using paraprof

26

http://www.cs.uoregon.edu/research/tau/docs/newguide/bk01ch06s07.html
http://www.cs.uoregon.edu/research/tau/docs/newguide/bk01ch06s07.html

TAU with STOMP/NWChem

Stuck at getting STOMP running

Profiles with and without instrumentation

NWChem 6.0

Uses GA 4.3 – shared lib support not clean

Compiler name hardwired in Makefile

Hacked a version to enable TAU source
instrumentation

Resolving linking issues

NWChem trunk

Have it working with GA 5.0 shared libraries

Attempting library interposition using TAU

Build order: PDT, GA 5.0, TAU, Rest of NWchem
27

Final Thoughts

Thoughtful application architecture should
simplify integration withTAU

GA 5.0 with TAU was much easier than anything
else we tried

TAU as a module helps everyone

Unless everyone installs their own TAU

TAU requires GA – GA cannot then be local

We still do not fully grok TAU, but could still
use it

It is a lifelong learning process I guess

Sameer is your friend!
28

