
Bi-monthly Newsletter – July 2009

Initiative Leadership

T.P.Straatsma, Initiative Lead

(509) 375-2802

tps@pnl.gov

Operational Team

Myra Wyant, Finance

Melissa Huber, Administrator

Christine Novak,

Communications

Website

http://www.pnl.gov/xsci

Technical Roadmap for Global Arrays

The eXtreme Scale Computing Initiative organized a PNNL internal meeting to discuss a
technical roadmap for the Global Arrays programming model. July 21, 2009, a group of
almost thirty computational scientists from a variety of disciplines, including biology,
chemistry, mass spectrometry, molecular science, national security, power grid, and
subsurface science, met for a full day with computer scientists to discuss the role of Global
Arrays in the parallel execution of their simulation and analysis software. Chaired by Dr.
Daniel Chavarría, this group of scientist recommended a wide range of additional capabilities.
A roadmap document for future technical development of the Global Array programming
model is in preparation.

XSCI Research Accomplishments

The future extreme-scale computers can be expected to contain hundreds of thousands to millions

of processors. The sheer number of processors and their complex interaction makes the problem of

application scalability and identifying performance limitations a challenging one. The XSCI

addresses this issue in the context of the Global Arrays suite, the programming model used to

develop key applications at PNNL. It also aims at developing a better understanding of the

application characteristics to provide insights into its performance on future parallel systems.

While several tools exist to extract and analyze performance information, many of them focus on

either sequential programs or MPI. We are investigating and performing the extensions to

integrate support for ARMCI/GA with such tools or provide an equivalent capability.

Scalable Performance Diagnostics

S. Krishnamoorthy

Global Arrays suite is a portable and high-performance one-sided programming model. The

Aggregate Remote Memory Copy Interface (ARMCI) provides one-sided access to remote data,

while Global Arrays (GA) presents a global view a multi-dimensional array distributed among

physical memories of the processors. The high-level interface provided by Global Arrays enables

convenient programming of complex scientific calculations without impacting performance. The

development of mechanisms to incorporate performance diagnostics and feedback into Global

Arrays will enable such applications to effectively exploit future extreme-scale systems.

The performance and analysis tuning process we envision is shown in Figure 1. The application

developer can provide useful domain-specific information that can simplify performance

collection and analysis. In addition, the user can decide the level of detail and the components

measured to tailor the data collected to meet the needs at hand. Such information is used to decide

the appropriate instrumentation in the program, which is then executed. The performance

information from the different processes is collected and aggregated to derive a composite

performance output. This output can be directly viewed by the user or run through various

analyses for common performance bottlenecks. These steps can be repeated by the user to further

tune the application.



XSCI Bi-Monthly Newsletter

The XSCI is a bi-monthly publication covering research being conducted in PNNL’s eXtreme Scale Computing Initiative. For more
information, contact the initiative leads or visit our web page

Figure 1. Performance tuning process

We have developed tools and extensions to ARMCI to support

some of the capabilities required in the tuning process

Instrumenter, PerfCollector, PerfAggregator, PerfAnalyzer, and

UserInterface.

Instrumenter – Wrapper generators for ARMCI/GA

Several MPI libraries provide tools to generate wrappers to MPI

calls. Performance and debugging tools use these wrapper

generators to intercept and instrument the MPI calls. We have

developed a similar capability for ARMCI/GA. Designed after

the wrappergen tool in the mpich library, the tool uses a multi

pass procedure to incrementally adding wrapper to functions of

interest, which are then coalesced into a single wrapper function.

This allows multiple wrappers to be composed without the

overhead of several function calls.

Instrumenter – Custom binary instrumentation:

currently provide two ways for a user to control the profiling

process. A user can define regions – functions whose

performance characteristics is of interest, and operations

functions whose execution times need to be profiled. Operations

can be ARMCI/GA functions or arbitrary user-defined functions.

Time spent in each of the operations, together with additional

information for ARMCI/GA functions, is provided for each

region individually. The information from the user is used to

instrumentation the application executable (binary) using the

dyninst binary instrumentation library. This capability is used

to refine the performance information collected and relate it to

application source code. Binary instrumentation also simplifies

instrumentation by not requiring source code changes.

PerfCollector & PerfAggregator – Communication trace
compression: A communication trace is a

communication events with their associated information. A

communication trace provides a lossless reproduction of the

communication operations in an application run, and can be used

monthly publication covering research being conducted in PNNL’s eXtreme Scale Computing Initiative. For more
information, contact the initiative leads or visit our web page http://www.pnl.gov/xsci.

We have developed tools and extensions to ARMCI to support

some of the capabilities required in the tuning process – namely,

Instrumenter, PerfCollector, PerfAggregator, PerfAnalyzer, and

Wrapper generators for ARMCI/GA:

Several MPI libraries provide tools to generate wrappers to MPI

calls. Performance and debugging tools use these wrapper

generators to intercept and instrument the MPI calls. We have

d a similar capability for ARMCI/GA. Designed after

library, the tool uses a multi-

pass procedure to incrementally adding wrapper to functions of

interest, which are then coalesced into a single wrapper function.

s multiple wrappers to be composed without the

Custom binary instrumentation: We

currently provide two ways for a user to control the profiling

functions whose

mance characteristics is of interest, and operations –

functions whose execution times need to be profiled. Operations

defined functions.

Time spent in each of the operations, together with additional

for ARMCI/GA functions, is provided for each

region individually. The information from the user is used to

instrumentation the application executable (binary) using the

binary instrumentation library. This capability is used

nce information collected and relate it to

application source code. Binary instrumentation also simplifies

instrumentation by not requiring source code changes.

Communication trace
A communication trace is a sequence of

communication events with their associated information. A

communication trace provides a lossless reproduction of the

communication operations in an application run, and can be used

to identify and isolate performance bugs. Many existing tools

either do not provide a communication trace, or store the

information in an uncompressed form. At large process counts,

an uncompressed trace can be prohibitively large. We have

developed a scalable trace collection and compression scheme

that identified and exploits repeating communication patterns

within and across the communication trace of processes in an

application run. On the NAS parallel benchmarks, we achieve

greatly improved compression. Results are

existing and our new techniques.

Figure 2. Trace compression over existing scheme

(ScalaTrace)

PerfCollector & PerfAggregator
Common performance bottlenecks can be identified by looking

at the execution profiles of application runs, which presents

aggregate information without time ordering. The absence of

ordering information allows more concise representations and

faster analysis. We have developed capabilities in ARMCI to

enable the collection of profiles of communication calls and

user-specified functions. These are collected as a collection of

rows which are then loaded into an RDBMS database for

analysis.

PerfAnalysis – SQL-based profile analysis

loaded into a database can be processed using SQL queries for

performance information. We provide a list of queries to answer

common performance questions, which can be presented and

visualized using GUI tools such as

currently extending the profile collection and visualization to

incorporate feedback we got from a d

We are working with the application projects in the I

evaluate the applications using these tools. This will help the

scientists better understand the runtime behavior of their

applications while enabling us to ensure

the developed tools and capabilities. We are also investigating

integration of the performance output into existing tools.

1

10

100

1,000

10,000

100,000

32 64 128

Tr
ac

e
fi

le
si

ze
(K

B
)

Num. processes

July 2009

monthly publication covering research being conducted in PNNL’s eXtreme Scale Computing Initiative. For more
PNNL-SA-67579

to identify and isolate performance bugs. Many existing tools

either do not provide a communication trace, or store the

information in an uncompressed form. At large process counts,

an uncompressed trace can be prohibitively large. We have

developed a scalable trace collection and compression scheme

nd exploits repeating communication patterns

within and across the communication trace of processes in an

application run. On the NAS parallel benchmarks, we achieve

. Results are shown in Figure 2 for

Figure 2. Trace compression over existing scheme

PerfCollector & PerfAggregator – Profile collection:
Common performance bottlenecks can be identified by looking

at the execution profiles of application runs, which presents

aggregate information without time ordering. The absence of

ordering information allows more concise representations and

faster analysis. We have developed capabilities in ARMCI to

enable the collection of profiles of communication calls and

functions. These are collected as a collection of

rows which are then loaded into an RDBMS database for

based profile analysis: The profile data

loaded into a database can be processed using SQL queries for

ation. We provide a list of queries to answer

common performance questions, which can be presented and

visualized using GUI tools such as sqliteman. We are

currently extending the profile collection and visualization to

incorporate feedback we got from a demonstration of the tool.

he application projects in the Initiative to

evaluate the applications using these tools. This will help the

scientists better understand the runtime behavior of their

applications while enabling us to ensure usability and efficacy of

the developed tools and capabilities. We are also investigating

integration of the performance output into existing tools.

256
Num. processes

NAS MG

scalatrace (Class C)

scalatrace (Class D)

Ours (Class C)

Ours (Class D)


