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MPI Philosophy

= Different programming models have picked different
tradeoffs in the space of
portability, performance, expressiveness, and ease of use

= Often contradicting goals
— Most programming models try to pick a subset of this functionality

— Trying to do everything is a pleasant but (mostly) a pipe dream

= MPIchose to be highly feature rich and portable, and has
enabled an ecosystem to be built around it to provide
domain-specific algorithms and simplistic use of a subset of
the features (PETSc, Trilinos, FFTW, ADLB, Debuggers)
— Do what you do well

— Build a strong base to allow others to build on top of
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Architectural Considerations

Weird processor and memory
architectures are coming

— Hierarchical processors

e Threads in cores in dies in sockets in .
NUMA domains in nodes in systems o
— Lots of light-weight cores | g;gmmm
* |n-order execution (no speculation)
e Small caches Mmmﬂm
e No hardware cache coherency I .
— Heterogeneous cores ij]
e General purpose processors + GPGPUs 1 e
* Integrated heterogeneous processors DDDDDifmmwm
— Hierarchical and Heterogeneous Memory “”‘E“
e Accelerator memory MAMKTIORE ke Memory
e NVRAM, Less reliable memory
Courtesy William Gropp (UIUC)
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Hardware Evolution Requires Software Evolution

* The current MPIl standard (and implementations) lack in a
number of features

" |mprovements for hierarchical and heterogeneous
architectures

— Topology awareness for applications

e Locality information
— Improvements for asynchronous data and computation movement
— Interoperability with threads and accelerators

— Compiler support for optimizing MPI applications
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Virtual Topologies
(well, not entirely MPI-3)




MPI Virtual Topology

= MPItopology functions:

— Define the communication topology of the application

 Logical process arrangement or virtual topology

— Possibly reorder the processes to efficiently map over the
system architecture (physical topology) for more performance

= Virtual topology models:
— Cartesian topology: multi-dimensional Cartesian arrangement
— Graph topology: non-specific graph arrangement

= Graph topology representation
— Non-distributed: easier to manage, less scalable

— Distributed: new to the standard, more scalable
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Physical Topology Distance Example

= d1 will have the highest load value in the graph.

* The path between N2 and N3 (d4) will have the lowest load
value, indicating the lowest performance path.

Pavan Balaji, Argonne National Laboratory PPME workshop, Portland, Oregon (08/14/2012)



\ |
Applications: Topology-aware Mapping Improvement

[ o -
over Block Mapping (%) 128-core cluster B
Communication Time Improvement Run-time Improvement
non-weighted graph non-weighted graph
® weighted graph ® weighted graph
25 [ Weighted & network-aware graph 8 [1 Weighted & network-aware graph
6 —
4 4
z 4
5 g S 2 ﬁ ﬁ 0 I I !
- = o = i c = K 00 00
-10 o a > 09 = A G Q -
e £ == & ¢ 3 £ g 8 ¢
- a.
15 1—=2 < S 4 & = S
20 < Applictions S = App@ations
-6 < i

Collaboration with Ahmad Afsahi, Queen’s University, Canada

3 Pavan Balaji, Argonne National Laboratory PPME workshop, Portland, Oregon (08/14/2012)



Communication Kernel for Ocean Modeling

System Size : 16K Cores

System Size : 128K Cores
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Physical Topology Information Retrieval

= Virtual topology functionality relies on the user providing MPI
with the application communication pattern

= What about work-stealing applications? Communication is
pretty random

= MPI-3 introduced a new function called MPI_Comm_split_type

— ldeais to split a communicator based on some physical hardware
information

— E.g., you can split a communicator to contain processes that can create a
shared memory region

— Implementations can extend it to allow any form of creation — same

node, same NUMA socket, same cache domain, same switch, same rack

Collaboration with William Gropp, UIUC
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MPI-3 RMA and Shared Memory
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MPI-3 RMA (low-level one-sided communication)

= Per-process-pair one-sided communication

— Should be able move data without requiring that the remote process

synchronize
— Each process exposes a part of its memory to other processes

— Other processes can directly read from or write to this memory
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Data movement

MPI_Get, MPI_Put, MPl_Accumulate, MPI_Get_accumulate,

/A

“atomic get”, “atomic put”, compare-and-swap, fetch-and-op

— Move data between public copy of target window and origin local
buffer

= Nonblocking, subsequent synchronization may block
= Distinct from load/store from/to private copy

= Specified ordering of operations (RAR, WAW, WAR, RAW
ordered by default; can disable ordering as needed)

Pavan Balaji, Argonne National Laboratory PPME workshop, Portland, Oregon (08/14/2012)



Generalized Memory Model

Window: Expose memory for RMA ~ RankO Rank 1

— Logical public and private copies

— Portable data consistency model

EndE Public
Active and Passive synchronization M) Copy

Accesses must occur within an epoch %)

modes Pletior, i Copy
v
— Active: target participates Private
— Passive: target does not participate Copy

Pavan Balaji, Argonne National Laboratory PPME workshop, Portland, Oregon (08/14/2012)



Locality-awareness in MPl RMA

Ability to allow for “locales” for public memory

Can split a communicator into locales
— Locales are implementation defined

— Shared memory, NUMA, socket, L2 cache, ...

MPI-3 allows “shared memory capable locales”

— In MPI-3.1, we are planning to add other locales as well (e.g., same
rack, same switch)

= (Can create shared memory on these locales

— Direct load/store access within the locale

— Appropriate synchronization can be done with traditional MPI
primitives

Pavan Balaji, Argonne National Laboratory PPME workshop, Portland, Oregon (08/14/2012)



Comparison to other models (thanks Bill!)

= Bonachea’s and Duell’s criticism
— Exposing public memory is collective (support for dynamically
exposing public memory in MPI-3)

— Exposed memory has to be allocated through MPI, e.g., expose stack
memory (yes, we allow that now; go shoot yourself on the foot!)

— Overlapping GET/PUT operations was erroneous (it is valid now, but
data can be garbage; atomic GET/PUT provided for per-basic-datatype

atomicity)

— Too generic; loses functionality on architectures that support stronger
memory models (two different memory models provided)

Pavan Balaji, Argonne National Laboratory PPME workshop, Portland, Oregon (08/14/2012)



Comparison to other models (contd.)

= ARMCI/UPC/CAF
— Semantics similar to MPI_RMA_UNIFIED (if available)

— Local completion
e Either blocking, implicit handles or Test/Wait(all)
e Similar to “implicit handles”
— Remote completion
e (all)Fence == Flush(_all)
— Ordering with collectives
e ARMCI_Barrier combines barrier + allfence
— Memory allocation
e Remote memory allocation not provided

e Can be done if remote progress is not required (e.g., GASNet)

Pavan Balaji, Argonne National Laboratory PPME workshop, Portland, Oregon (08/14/2012)



MPI + Threads (OpenMP, etc.)
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The Current Situation

= All MPlimplementations support MPI_THREAD_SINGLE (duh).
= They probably support MPI_THREAD FUNNELED even if they
don’t admit it.
— Does require thread-safe malloc

— Probably OK in OpenMP programs

= Many (but not all) implementations support
THREAD MULTIPLE

— Hard to implement efficiently though (lock granularity issue)
= “Easy” OpenMP programs (loops parallelized with

OpenMP, communication in between loops) only need
FUNNELED

— So don’t need “thread-safe” MPI for many hybrid programs

— But watch out for Amdahl’s Law!

Pavan Balaji, Argonne National Laboratory PPME workshop, Portland, Oregon (08/14/2012)



Performance with MPI_THREAD_MULTIPLE

" Thread safety does not come for free

* The implementation must protect certain data structures or

parts of code with mutexes or critical sections

= We ran tests to measure communication performance when
using multiple threads versus multiple processes

— Details in our Parallel Computing (journal) paper (2009)

node0

Pavan Balaji, Argonne National Laboratory
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Why is it hard to optimize MPI_THREAD_MULTIPLE

= MPIlinternally maintains several resources

= Because of MPIl semantics, it is required that all threads have
access to some of the data structures

— E.g., thread 1 can post an Irecv, and thread 2 can wait for its completion
—thus the request queue has to be shared between both threads

— Since multiple threads are accessing this shared queue, it needs to be
locked — adds a lot of overhead

Thread 0: Thread 1:
MPI_Irecv(..., &req); pthread_barrier(...);
pthread_barrier(...); MPI_Wait(..., &req, ...);

= MPI semantics issue, not (only) an implementation issue

= Mostly unused semantic, but the implementation has to
support it, just in case

Pavan Balaji, Argonne National Laboratory PPME workshop, Portland, Oregon (08/14/2012)



MPI-3.1 proposal: Threads as first-class citizens

= Background:

— Matching semantics in MPI are based on source, tag and
communicator

— You have MPI_ANY_SOURCE and MPI_ANY_TAG, but not an
“MPI_ANY_COMM”

— Communicators are independent, but MPI semantics make it hard to
decouple communicator specific data structures
" |deais to add an attribute (or info argument) to a
communicator to specify independence

— Application tells the MPIl implementation — “when I’'m waiting on this
communicator, you don’t need to check for progress on other
communicators”

— MPIl implementation can create independent queues for each
communicator

Pavan Balaji, Argonne National Laboratory PPME workshop, Portland, Oregon (08/14/2012)



Active Messages in MPI
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Acti

ve Messages/RMI in MPI

" |mplementations of Active Messages over MPI exist

E.g., AM++ by Jeremiah, Torsten, Andrew

= We are looking at a slightly different model (AM support

included inside the MPI implementation)

Datatype marshalling/demarshalling

Asynchronous progress without requiring a polling thread and
additional locks

Integrated with the MPI-RMA infrastructure (better memory
protection with remote locks)

Multiple internal implementation models (e.g., sender computes)

Pavan Balaji, Argonne National Laboratory PPME workshop, Portland, Oregon (08/14/2012)



MPI-AM functionality

= Collective registration of AM functions
— Each process specifies a local function (useful when different
processes are different executables)

— Remote operation (logically) triggers execution of the function local to
the target process

— Functions are equivalent (need not be identical); allows for sender-
compute models

= Two models

— Sender specifies which data will be touched

e QOverlapping active messages targeted to the same window

e Can get data and compute locally if the memory touched is small
— Sender does not specify which data will be touched

e Can still do sender compute in shared memory domains

Pavan Balaji, Argonne National Laboratory PPME workshop, Portland, Oregon (08/14/2012)



MPI-AM functionality (contd.)

reply
handle

Process 0

= === send

AM

Com

Process 1 Process 2
““““““ MPI_Send
jmessage S
\ handler L

'I'ﬁ"iPI_Recv

on Compytation

reply,
i I
r@ : Process 0 ................ A.M...............> Process 1

! : (logical)

“' Y ';' L J v ) ]
Private Sender Private
buffer Compute buffer

Issue: Asynchronous handling of active messages Public buffer

over the network and shared memory (shared memory)

We use a sleeping thread for the network to

support RMA and AM messages (no shared data
structures with send/recv)

No overhead on non-AM communication

Pavan Balaji, Argonne National Laboratory
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AM

Performance

= User-defined operation
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Asynchronous Progress Performance

(preliminary numbers)

P |
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Integrated Data Movement in
Heterogeneous Environments
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Hybrid Programming with Accelerator models

= Simple GPU interoperability works out of the box
= Many MPI processes

= Each MPI process can launch CUDA/OpenCL/... kernels to
compute on data

= Move data back to the process memory

= Use MPI to move data between processes

Pavan Balaji, Argonne National Laboratory PPME workshop, Portland, Oregon (08/14/2012)



GPU
device
memory

N A
\C/@

N
CPU
\A

memory

Rank=0

if (rank == 0)

{

cudaMemcpy(s_buf, s_dev_buf, D2H);
MPI_Send(s_buf, .. ..);

Pavan Balaji, Argonne National Laboratory

Interoperability with GPUs: Current Data Model

GPU
device
memory

P4

CPU

main

etwork

main €

memory

Rank=1

if (rank == 1)

{
MPI_Recv(r_buf, .. ..);

cudaMemcpy(r_dev_buf, r_buf, H2D);

PPME workshop, Portland, Oregon (08/14/2012)



Tighter Interoperability: MPI-ACC (research project)

" Productivity Goal (API)
— Implement the rich data transfer interface of MPI for CUDA/OpenCL/..

= Performance Goal
— Pipeline the data movement between GPU memory, host memory and
remote node using architecture specific enhancements
e NVIDIA: GPU Direct

e Multi-stream copies between GPU and memory (multiple command queues
can benefit from parallelism in the DMA engine)

— Future architectures:
e Zero-copy data movement if accelerators have direct network access

e Eliminate “GPU-to-host” data transfers if the heterogeneous processors
share memory spaces

= All of the above should happen automatically within the MPI
implementation, i.e. applications should not redo their data

movement for each architecture
Pavan Balaji, Argonne National Laboratory PPME workshop, Portland, Oregon (08/14/2012)



\
MPI-ACC: Generalized Runtime for Accelerator Systems

Main Main
Memory R ﬂ Memory
GPU \ // GPU
Memory R \ 7’| Memory
N\ / /

NVRAM & \\ // ~» NVRAM
~ % etwork (// -~
, CPU € > CcPU R ,
Unreliable = - ~ Unreliable
Memory Memory

Rank=0 Rank=1
if (rank == 0) i{f (rank == 1)
{ MPI_Send(s_buf, .. ..); : MPI_Recv(r_buf, .. ..);
}

Pavan Balaji, Argonne National Laboratory PPME workshop, Portland, Oregon (08/14/2012)



N
Experimental Results (CUDA - RNDV mode)
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MPI + GPU Example - Stencil Computation
O A )

non-contiguous!

/ GPU |

GPU
Nl

cudaNlemcpy

high latency! Y 5
MPI_lIsend/Irecv

cudaMemcpy CPU CPU v\cudaMemcpy
f N C N

16 MPI transfers + 16 GPU-CPU xfers

2X number of transfers! \ GPU

N—

\ GPU

Collaboration with Nagiza Somatova, NCSU
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GPU optimizations for Data Packing

= Element-wise traversal by different threads

= Embarrassingly parallel problem, except for structs, where

element sizes are not uniform
threads

> B e > B © I

Pack
1
| Recorded by
4_
# elements Dataloop

traverse by element #, read/write using extent/size

v

Pavan Balaji, Argonne National Laboratory PPME workshop, Portland, Oregon (08/14/2012)



Packing Throughput (Indexed)

Indexed Pack vs. Block cudaMemcpy: 8B Blocks
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\
Packing Throughput (Column-Vector)

Vector Pack vs. cudaMemcpy2D: 8B Blocks (Column-Vector)
16384 T T T T I T T T T T T T T T I

4096 -

1024 -

256 I-
64 |

16 [

Throughput (MB/s)

0.25° Pack —+—
’ memcpy2D —<—

I PCl-e Max ]

0-0625 1 I 1 1 | 1 1 1 1 | 1 ] 1 1

50 05 510 15 520
Number of Blocks

Pavan Balaji, Argonne National Laboratory PPME workshop, Portland, Oregon (08/14/2012)



MPI-ACC Performance Comparison

6.000 . . . Py :
Communication Phase in EpiSimdemics
5.000 -
4.000 -
_ 3.000
172
p=}
c
S 2.000 -
b
Q _
£ 1.000
=
0.000 -
MPI + CUDA MPI-ACC
W D-D Copy (Packing) 0 0.003
B GPU Receive Buffer Init 0 0.024
m H-D Copy 0.382 0
 H-H Copy (Packing) 2.570 0
B CPU Receive Buffer Init 2.627 0 (H-H)

(H-D)

 MPI-ACC accelerators data

movement operations by two
orders of magnitude

* Enables new application-level

optimizations

l (Pipelining)

Host Host
<]
13 -’
(D-D)
GPU GPU
Traditional MPI MPI-ACC
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Compiler Infrastructure for MPI
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Beyond MPI-3: Compiler Support for MPI

#pragma mpi coalesce safe fn(foo)

" Compiler support for MPI for (i = 0; i< 100; i++4) {

) ) MPI Put();

— ldea is to provide performance -

o _ o MPI Put() ;
portability and simplicity of use

for MPI applications

/* some code */

= Pragmas allow applications to f£oo () ;

achieve performance
MPI Accumulate() ;

portability across different MPI_Get () ;

platforms

/* some other code */

= Collaboration with Qing Yi @
bar() ;

UT San Antonio

MPI Put() ;

o Pavan Balaji, Argonne National Laboratory PPME workshop, Portland, Oregon (08/14/2012)



Issues and Considerations

= Data coalescing
— Why? Avoid function call overheads for each operation
— Amount of coalescing required is architecture specific

— Overlapping Operations:
e Multiple accumulate operations to the same location is valid

e Single accumulate operation writing multiple data elements to the same
location is not

— Handling unrecognized functions

* Transformation of bulk-synchronous to asynchronous
GET/PUT models

= Load/store and PUT/GET interchangeability

Pavan Balaji, Argonne National Laboratory PPME workshop, Portland, Oregon (08/14/2012)



Machine: Fusion, #Proc: 64

Machine: Fusion, #Proc: 128
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RMA vs local load/store
Machine: Fusion
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[ Original

Exec time in Sec
()]
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4 - B Compiler
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Number of Processes

0 Network: InfiniBand
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Summary

| don’t know what the Exascale Programming Model will look like, but |
know it will be called MPI (or “MPI+X”)

— Caveat: | don’t really think “the Exascale programming model” makes much sense — it
has and will always be a suite of (possibly vertically stacked) programming models

— Whether it is visible to the “end-user” or not is a separate discussion

— MPI supports and encourages high-level models to be built on top of it
Different programming models have picked different tradeoffs in the

space of portability, performance, expressiveness, and ease of use

— MPI as a runtime system has chosen to be highly feature rich and portable, and has
enabled high-level libraries to be built on top of it to provide domain-specific algorithms
and simplistic use of a subset of the features (e.g., PETSc, Trilinos, FFTW, ADLB, ...)

— This model has been extremely successful and has resulted in a wide and rich ecosystem
built around MPI that includes high-level domain-specific libraries, performance and
debugging tools, and applications in almost every domain of science

Current MPI does not meet the requirements for some applications, but
both the MPI standard and its implementations are evolving

Pavan Balaji, Argonne National Laboratory PPME workshop, Portland, Oregon (08/14/2012)



Thank You! WINRIA

=  MPICH: shameless plug

= Leads

= Argonne National Laboratory

= University of lllinois, Urbana-Champaign
= Core MPICH developers

(intel)mmm

Microsoft

<|||i

= IBM i
= INRIA ANy Myriczc:z:

=  Microsoft
" Intel
= University of British Columbia
= Queen’s University
= Derivative implementations
= Cray
=  Myricom
=  Ohio State University
= Other Collaborators
=  Absoft, Pacific Northwest National
Laboratory, Qlogic, Totalview
Technologies, University of Utah
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